Chin. Phys. Lett.  2009, Vol. 26 Issue (8): 084209    DOI: 10.1088/0256-307X/26/8/084209
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Application of Equivalent Air Gap Method in Uniaxial Crystal Plate
REN Wen-Yi, ZHANG Chun-Min, MU Ting-Kui
School of Science, Xi'an Jiaotong University, Xi'an 710049Non-equilibrium Condensed Matter and Quantum Engineering Laboratory(Ministry of Education), Xi'an Jiaotong University, Xi'an 710049
Cite this article:   
REN Wen-Yi, ZHANG Chun-Min, MU Ting-Kui 2009 Chin. Phys. Lett. 26 084209
Download: PDF(299KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The equivalent air gap method is a simple way to trace the ray propagation in an isotropic medium, but it cannot be applied to an anisotropic medium. We present the exact general expressions of the equivalent air gap thicknesses and the displacements for the plane-parallel uniaxial crystal plates. They are also suitable for the isotropic medium. This method is useful when one determines whether certain size plane-parallel plates can be fitted into the available air of an optical system, and also in the prism system design.
Keywords: 42.15.-I      42.25.Lc     
Received: 16 April 2009      Published: 30 July 2009
PACS:  42.15.-i (Geometrical optics)  
  42.25.Lc (Birefringence)  
TRENDMD:   
URL:  
http://cpl.iphy.ac.cn/10.1088/0256-307X/26/8/084209       OR      http://cpl.iphy.ac.cn/Y2009/V26/I8/084209
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
REN Wen-Yi
ZHANG Chun-Min
MU Ting-Kui
[1] Park J H, Jung S, Choi H and Lee B 2003 Opt. Express 11 1862
[2] Smith W J 2000 Modern Optical Engineering (New York:McGraw-Hill) p 100
[3] Wu J F, Zhang C M, Zhang Y T, Liu H C and Zhai X J 2008 Chin. Phys. B 17 2504
[4] Wu L, Zhang C M, Yuan Y and Zhao B C 2005 Acta Opt.Sin. 25 885 (in Chinese)
[5] Zhang C M et al 2000 Proc. SPIE 4087 957
[6] Zhang C M et al 2004 J. Opt. A: Pure Appl. Opt. 6 815
[4] Zhang C M et al 2002 Opt. Commun. 203 21
[8] Zhang C M et al 2006 Proc. SPIE 6150 615001
[9] Zhang C M et al 2004 Appl. Opt. 43 6090
[10] Sanyal S, Kawata Y, Mandal S and Ghosh A 2004 Opt.Eng. 43 1381
[11] Sanyal S, Kawata Y, Ghosh A and Mandal S 2004 Appl.Opt. 43 3838
[12] Born M and Wolf E 1999 Principles of Optics 7th edn(Cambridge: Cambridge University) p 790
[13] Shen W M and Shao Z X 2002 Acta Opt. Sin. 22765 (in Chinese)
Related articles from Frontiers Journals
[1] LIN Yan-Ting, REN Bo, ZHAO Xiang-Yong, WANG Fei-Fei, WANG Yao-Jin, XU Hai-Qing, LIN Di, LUO Hao-Su. Optical Dispersion Behavior and Band Gap Energy of Relaxor Ferroelectric 0.92Pb(Mg1/3Nb2/3)O3-0.08PbTiO3 Single Crystal[J]. Chin. Phys. Lett., 2009, 26(7): 084209
[2] REN Cheng, TAN Yi-Dong, ZHANG Shu-Lian. Generation and Modulation of Phase Difference of Output Intensities in a Feedback Nd:YAG Laser with an Extracavity Waveplate Rotated[J]. Chin. Phys. Lett., 2009, 26(3): 084209
[3] ZHAO Shuang, WU Chong-Qing, WANG Yong-Jun. Polarization Dependence of Linewidth Enhancement Factor in Semiconductor Optical Amplifier and Its Implication for Nonlinear Polarization Rotation[J]. Chin. Phys. Lett., 2009, 26(10): 084209
[4] RAO Lian-Zhou, WANG Zong-Chi, ZHENG Xiao-Xia. Tightly Focusing of Circularly Polarized Vortex Beams through a Uniaxial Birefringent Crystal[J]. Chin. Phys. Lett., 2008, 25(9): 084209
[5] PAN Xu, WANG Chang-Shun, ZHANG Xiao-Qiang. Inverse Relaxation of Photoinduced Birefringence in a Liquid-Crystalline Azobenzene Side-Chain Polymer[J]. Chin. Phys. Lett., 2008, 25(9): 084209
[6] ZHAO Shuang, WU Fu-Quan, ZHANG Dong-Sheng, ZHAO Xin, WANG Jin-Xi, XUE Mei, ZHONG Wei-Gang. Temperature Influence on Divergence Angles of Quartz Crystal Wollaston Prism[J]. Chin. Phys. Lett., 2008, 25(7): 084209
[7] LI Zheng-Yong, WU Chong-Qing, SHUM Ping, DONG Hui. Matrix-Based Polarization Analysis and Application of Semiconductor Optical Amplifiers[J]. Chin. Phys. Lett., 2008, 25(11): 084209
[8] SUN Yi-Min, MAO Zong-Liang, HOU Bi-Hui, LIU Guo-Qing, WANG Li. Giant Birefringence of Lithium Niobate Crystals in the Terahertz Region[J]. Chin. Phys. Lett., 2007, 24(2): 084209
[9] YU Xiao-Tong, WEI Ze-Yong, LI Hong-Qiang, ZHANG Ye-Wen, CHEN Hong. Negative Refraction in One-Dimensional Photonic Crystals with Tilted Interface[J]. Chin. Phys. Lett., 2007, 24(12): 084209
[10] WEI Lai, TENG Xue-Lei, LU Ming, ZHAO You-Yuan, MA De-Wang, DING Jian-Dong. Photoinduced Birefringence and Broadband All-Optical Photonic Switch in a Bacteriorhodopsin/Polymer Composite Film[J]. Chin. Phys. Lett., 2007, 24(12): 084209
[11] ZHOU Lu-Fei, ZHANG Shu-Lian, GUO Hong, REN Zhou. Precision Controlling of Frequency Difference for Elastic-Stress Birefringence He--Ne Dual-Frequency Lasers[J]. Chin. Phys. Lett., 2007, 24(11): 084209
[12] Jing QIN, Norihiro UMEDA. Near-Field Birefringence Response of Liquid Crystal Molecules in Thickness Direction of Liquid Crystal Thin Film Orientated by Shear Force[J]. Chin. Phys. Lett., 2007, 24(10): 084209
[13] MAO Wei, ZHANG Shu-Lian, ZHANG Lian-Qing, ZHU Jun, LI Yan. Optical Feedback Characteristics in He--Ne Dual Frequency Lasers[J]. Chin. Phys. Lett., 2006, 23(5): 084209
[14] FEI Li-Gang, ZHANG Shu-Lian. Laser Feedback Technique for Precise Retardation Measurements[J]. Chin. Phys. Lett., 2006, 23(11): 084209
[15] ZONG Xiao-Bin, LIU Wei-Xin, ZHANG Shu-Lian. Intensity Tuning Characters of Frequency Split Lasers[J]. Chin. Phys. Lett., 2005, 22(8): 084209
Viewed
Full text


Abstract