Chin. Phys. Lett.  2008, Vol. 25 Issue (9): 3319-3322    DOI:
Original Articles |
Temperature Dependence of Thermal Conductivity of Nanofluids
LI Yu-Hua, QU Wei, FENG Jian-Chao
Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190
Cite this article:   
LI Yu-Hua, QU Wei, FENG Jian-Chao 2008 Chin. Phys. Lett. 25 3319-3322
Download: PDF(141KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Mechanism of thermal conductivity of nanofluids is analysed and calculated, including Brownian motion effects, particle agglomeration and viscosity, together influenced by temperature. The results show that only Brownian motion as reported is not enough to describe the temperature dependence of the thermal conductivity of nanofluids. The change of particle agglomeration and viscosity with temperature are also important factors. As temperature increases, the reduction of the particle surface energy would decrease the agglomeration of nanoparticles, and the reduction of viscosity would improve the Brownian motion. The results agree well with the experimental data reported.
Keywords: 47.61.Jd      44.35.+c      44.10.+i     
Received: 05 December 2007      Published: 29 August 2008
PACS:  47.61.Jd (Multiphase flows)  
  44.35.+c (Heat flow in multiphase systems)  
  44.10.+i (Heat conduction)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I9/03319
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Yu-Hua
QU Wei
FENG Jian-Chao
[1] Choi U S 1995 Developments and Applications ofNon-Newtonian Flows (New York: ASME) p 99
[2] Chen H, Yang W, He Y et al 2008 Powder Technol. 183 63
[3] Xuan Y and Li Q 2003 J. Heat Trans. 125 151
[4]Zhou L P and Wang B X 2003 J. Engin. Thermophys. 24 1037
[5]Zhang L D and Mou J M 1994 Nano Materials(Shengyang: Liaoning Science and Technology Press) (in Chinese)
[6]Zhou L P and Wang B X 2003 Prog. Natural Sci. 13 426
[7]Xie H Q, Xi T G 2006 J. Shanghai Second PolytechnicUniversity 23 200
[8]Xue Q Z 2003 Phys. Lett. 307 313
[9] Hwang Y J, Ahn Y C, Shin HS, Lee C G, Kim GT, Park H S andLee J K 2006 Appl. Phys. Lett. 6 1068
[10] Xuan Y M, Hu W F and Li Q 2002 Engin. Thermophys. 23 206 (in Chinese)
[11] Wang B X, Zhou LP and Peng X F 2003 J. Heat Mass.Trans. 46 2655
[12] Das S K, Putra N, Thiesen P and Roetzel W 2003 J.Heat Transfer 125 567
[13] Liu W, Deng X Y and Zhang Z K 2004 Phys. Testing andChemical Analysis: Phys. Testing 4064 (in Chinese)
[14] Li Q 2002 J. Engineering for Thermal Energy andPower 11 568 (in Chinese)
Related articles from Frontiers Journals
[1] LIN Jian-Zhong,**,CHEN Zhong-Li. Effect of Coagulation and Diffusion on Nanoparticle Distribution in a Fully Developed Turbulent Boundary Layer[J]. Chin. Phys. Lett., 2012, 29(5): 3319-3322
[2] LIU Jing,FENG Shi-Wei**,ZHANG Guang-Chen,ZHU Hui,GUO Chun-Sheng,QIAO Yan-Bin,LI Jing-Wan. A Novel Method for Measuring the Temperature in the Active Region of Semiconductor Modules[J]. Chin. Phys. Lett., 2012, 29(4): 3319-3322
[3] T. Hayat, **, S. Hina, Awatif A. Hendi . Peristaltic Motion of Power-Law Fluid with Heat and Mass Transfer[J]. Chin. Phys. Lett., 2011, 28(8): 3319-3322
[4] CHEN Liang**, ZHANG Wan-Rong, XIE Hong-Yun, JIN Dong-Yue, DING Chun-Bao, FU Qiang, WANG Ren-Qing, XIAO Ying, ZHAO Xin . Restabilizing Mechanisms after the Onset of Thermal Instability in Bipolar Transistors[J]. Chin. Phys. Lett., 2011, 28(7): 3319-3322
[5] XU Wen, CHEN Wei-Zhong**, TAO Feng, . Thermal Rectification in Graded Nonlinear Transmission Lines[J]. Chin. Phys. Lett., 2011, 28(12): 3319-3322
[6] WANG Yu-Ming, LIN Jian-Zhong, **, CHEN Zhong-Li . Properties of the Collision Efficiency of Nanoparticles in Brownian Coagulation[J]. Chin. Phys. Lett., 2011, 28(1): 3319-3322
[7] WEI Jin-Jia**, XUE Yan-Fang, ZHAO Jian-Fu, LI Jing . Bubble Behavior and Heat Transfer of Nucleate Pool Boiling on Micro-Pin-Finned Surface in Microgravity[J]. Chin. Phys. Lett., 2011, 28(1): 3319-3322
[8] LIU Qing-Nian, MENG Song-He, JIANG Chi-Ping, SONG Fan. Critical Biot's number for Determination of the Sensitivity of Spherical Ceramics to Thermal Shock[J]. Chin. Phys. Lett., 2010, 27(8): 3319-3322
[9] GONG Yue-Feng, SONG Zhi-Tang, LING Yun, LIU Yan, LI Yi-Jin, FENG Song-Lin. Three-Dimensional Finite Element Simulations for the Thermal Characteristics of PCRAMs with Different Buffer Layer Materials[J]. Chin. Phys. Lett., 2010, 27(8): 3319-3322
[10] ZHAO Jian-Fu, LI Jing, YAN Na, WANG Shuang-Feng. Transition to Film Boiling in Microgravity: Influence of Subcooling[J]. Chin. Phys. Lett., 2010, 27(7): 3319-3322
[11] YU Rong-Ze, LEI Qun, YANG Zheng-Ming, BIAN Ya-Nan. Nonlinear Flow Numerical Simulation of an Ultra-Low Permeability Reservoir[J]. Chin. Phys. Lett., 2010, 27(7): 3319-3322
[12] XIN Xiao-Feng, CHEN Cheng, WANG Bo-Fu, MA Dong-Jun, SUN De-Jun. Local Heating Effect of Flow Past a Circular Cylinder[J]. Chin. Phys. Lett., 2010, 27(4): 3319-3322
[13] CHEN Zhao-Jiang, ZHANG Shu-Yi. Thermal Depth Profiling Reconstruction by Multilayer Thermal Quadrupole Modeling and Particle Swarm Optimization[J]. Chin. Phys. Lett., 2010, 27(2): 3319-3322
[14] LI Hai-Bin, NIE Qing-Miao, XIN Xiao-Tian. Asymmetric Heat Conduction in One-Dimensional Hard-Point Model with Mass Gradient[J]. Chin. Phys. Lett., 2009, 26(7): 3319-3322
[15] TAO Yu-Jia, HUAI Xiu-Lan, LI Zhi-Gang. Numerical Simulation of Vapor Bubble Growth and Heat Transfer in a Thin Liquid Film[J]. Chin. Phys. Lett., 2009, 26(7): 3319-3322
Viewed
Full text


Abstract