Chin. Phys. Lett.  2008, Vol. 25 Issue (9): 3315-3318    DOI:
Original Articles |
Compressibility Effects in Turbulent Boundary Layers
CAO Yu-Hui1, PEI Jie1, CHEN Jun1, SHE Zhen-Su 1,2
1State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 1008712Department of Mathematics, University of California, Los Angeles, Los Angeles, CA 90095, USA
Cite this article:   
CAO Yu-Hui, PEI Jie, CHEN Jun et al  2008 Chin. Phys. Lett. 25 3315-3318
Download: PDF(394KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Local cascade (LC) scheme and space-time correlations are used to study turbulent structures and their convection behaviour in the near-wall region of compressible boundary layers at Ma=0.8 and 1.3. The convection velocities of
fluctuating velocity components u (streamwise) and v (vertical) are investigated by statistically analysing scale-dependent ensembles of LC structures. The results suggest that u is convected with entropy perturbations while v with an isentropic process. An abnormal thin layer distinct from the conventional viscous sub-layer is discovered in the immediate vicinity of the wall (y+≤1) in supersonic flows. While in the region
1<y+<30, streamwise streaks dominate velocity, density and temperature fluctuations, the abnormal thin layer is dominated by spanwise streaks in vertical velocity and density fluctuations, where pressure and density fluctuations are strongly correlated. The LC scheme is proven to be effective in studying the nature of supersonic flows and compressibility effects on wall-bounded motions.
Keywords: 47.27.-i      47.27.N-      47.40.Ki     
Received: 15 May 2008      Published: 29 August 2008
PACS:  47.27.-i (Turbulent flows)  
  47.27.N-  
  47.40.Ki (Supersonic and hypersonic flows)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I9/03315
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CAO Yu-Hui
PEI Jie
CHEN Jun
SHE Zhen-Su
[1] Zaman Q and Hussain F 1981 J. Fluid Mech. 112379
[2] Kim J and Hussain F 1993 Phys. Fluids 5 695
[3] Wills J A B 1964 J. Fluid Mech. 20 417
[4] Xu C and Zhang Z 1996 Phys. Fluids 8 1938
[5] Guezennec Y G et al 1989 Phys. Fluids 1 764
[6] Johansson A V et al 1991 J. Fluid Mech. 224579
[7] Spina E F et al 1991 Phys. Fluids A 3 3124
[8] Gruber M R et al 1987 Exp. Fluids 22 397
[9] She Z S et al 2008 Phys. Fluids (submitted)
[10] Cao Y H et al 2007 J. Fluid Mech. Submitted
[11] Cao Y H et al 2008 Acta Mech. Sin. Accepted
[12] Hu K H and Chen K 2005 Chin. Phys. Lett. 223115
[13] Hu K H 2006 PhD dissertation (Beijing: PekingUniversity)
[14] Smits A J and Dussauge J P 1996 Turbulent ShearLayers in Turbulent Flow (New York: Springer)
[15] Coleman G N et al 1995 J. Fluid Mech. 305 159
Related articles from Frontiers Journals
[1] Mithilesh Singh**, L. P. Singh, Akmal Husain . Landau–Stanyukovich Rule and the Similarity Parameter of Converging Shock Waves in Magnetogasdynamics[J]. Chin. Phys. Lett., 2011, 28(9): 3315-3318
[2] ZHANG Hui-Qiang, LU Hao, WANG Bing**, WANG Xi-Lin . Experimental Investigation of Flow Drag and Turbulence Intensity of a Channel Flow with Rough Walls[J]. Chin. Phys. Lett., 2011, 28(8): 3315-3318
[3] WANG Li, LU Xi-Yun** . The Effect of Mach Number on Turbulence Behaviors in Compressible Boundary Layers[J]. Chin. Phys. Lett., 2011, 28(6): 3315-3318
[4] LUO Jian-Ping, LU Zhi-Ming, USHIJIMA Tatsuo, KITOH Osami, LIU Yu-Lu,. Lagrangian Structure Function's Scaling Exponents in Turbulent Channel Flow[J]. Chin. Phys. Lett., 2010, 27(2): 3315-3318
[5] MI Jian-Chun, R. A. Antonia. Key Factors in Determining the Magnitude of Vorticity in Turbulent Plane Wakes[J]. Chin. Phys. Lett., 2010, 27(2): 3315-3318
[6] L. P. Singh, Akmal Husain, M. Singh. An Approximate Analytical Solution of Imploding Strong Shocks in a Non-Ideal Gas through Lie Group Analysis[J]. Chin. Phys. Lett., 2010, 27(1): 3315-3318
[7] JIANG Mi, MA Ping. Vortex Turbulence due to the Interplay of Filament Tension and Rotational Anisotropy[J]. Chin. Phys. Lett., 2009, 26(7): 3315-3318
[8] HAN Jian, JIANG Nan .. Wavelet Cross-Spectrum Analysis of Multi-Scale Disturbance Instability and Transition on Sharp Cone Hypersonic Boundary Layer[J]. Chin. Phys. Lett., 2008, 25(5): 3315-3318
[9] FENG Shi-De, DONG Ping, ZHONG Lin-Hao. A Conceptual Model of Somali Jet Based on the Biot--Savart Law[J]. Chin. Phys. Lett., 2008, 25(12): 3315-3318
[10] XU Jing-Lei, MA Hui-Yang. Supersonic Turbulent Boundary Layer: DNS and RANS[J]. Chin. Phys. Lett., 2007, 24(3): 3315-3318
[11] TENG Hong-Hui, JIANG Zong-Lin. Analytical Interaction of the Acoustic Wave and Turbulent Flame[J]. Chin. Phys. Lett., 2007, 24(2): 3315-3318
[12] HU Kai-Heng, CHEN Kai. Relative Scaling Exponents and Intermittency in Compressible Turbulent Channel Flows[J]. Chin. Phys. Lett., 2005, 22(12): 3315-3318
[13] FANG Le, CUI Gui-Xiang, XU Chun-Xiao, ZHANG Zhao-Shun. Multi-Scale Analysis of Energy Transfer in Scalar Turbulence[J]. Chin. Phys. Lett., 2005, 22(11): 3315-3318
[14] ZHENG Lian-Cun, ZHANG Xin-Xin, HE Ji-Cheng. Transportation Characteristics for a Class of Generalized N-Diffusion Equation with Convection[J]. Chin. Phys. Lett., 2004, 21(6): 3315-3318
[15] HE Kai-Fen. Hopf Bifurcation in a Nonlinear Wave System[J]. Chin. Phys. Lett., 2004, 21(3): 3315-3318
Viewed
Full text


Abstract