Chin. Phys. Lett.  2008, Vol. 25 Issue (9): 3107-3110    DOI:
Original Articles |
Modified Khaneja--Glaser Decomposition and Realization of Three-Qubit Quantum Gate
WEI Hai-Rui, DI Yao-Min, ZHANG-Jie
School of Physics and Electronic Engineering, Xuzhou Normal University, Xuzhou 221116
Cite this article:   
WEI Hai-Rui, DI Yao-Min, ZHANG-Jie 2008 Chin. Phys. Lett. 25 3107-3110
Download: PDF(119KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Optimal implementation of quantum gates is crucial for realization of quantum computation. We slightly modify the Khaneja--Glaser decomposition (KGD) for n-qubits and give a new Cartan subalgbra in the second step of the decomposition. Based on this modified KGD, we investigate the realization of three-qubit logic gate and obtain the result that a general three-qubit quantum logic gate can be implemented using at most 73 one-qubit gates rotations with respect to the y and z axes and 26 CNOT gates.

Keywords: 03.65.Fd      03.67.Lx     
Received: 04 June 2008      Published: 29 August 2008
PACS:  03.65.Fd (Algebraic methods)  
  03.67.Lx (Quantum computation architectures and implementations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I9/03107
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WEI Hai-Rui
DI Yao-Min
ZHANG-Jie
[1] Nielsen M A and Chuang I L 2000 Quantum Computationand Quantum Information (Cambridge: Cambridge University Press)
[2] Barenco A, Bennett C H, Cleve R, DiVincenzo D P, MargolusN, Shor P, Sleator T, Smolin J A and Weinfurter H 1995 Phys.Rev. A 52 3457
[3] Khaneja N and Glaser S J 2001 Chem. Phys. 26711
[4] Bullock S S and Brennen G K 2004 J. Math. Phys. 45 2447
[5] Bullock S S, Brennen G K and O'Leary D P 2005 J.Phys. A: Math. Theor. 46 062104
[6] D'Alessandro D and Albertini F 2007 J. Phys. A: Math. Theor. 40 2439
[7] D'Alessandro D and Romano R 2006 J. Math. Phys. 47 082109
[8] Di Y M, Zhang J and Wei H R 2008 Sci. Chin. G (to bepublished)
[9] Zhang J, Di Y M and Wei H R 2008 Chin. Phys. Lett.(submitted)
[10] Vatan F and Williams C 2004 Phys. Rev. A 69032315
[11] Shende V V, Markov I L and Bullock S S 2004 Phys.Rev. A 69 062321
[12] Vidal G and Dawson C M 2004 Phys. Rev. A 69010301
[13] Vatan F and Williams C P 2004 arXiv: quant-ph/ 0401178v2
[14] Shende V V, Markov I L and Bullock S S 2004 Phys.Rev. A 69 062321
[15] Paige C C and Wei M 1994 Linear Algebra Appl. 1994 208/209 303-326
[16] M\"{ott\"{onen M, Vartiainen J J, Bergholm V andSalomaa M M 2004 Phys. Rev. Lett. 93 130502
Related articles from Frontiers Journals
[1] LIAN Jin-Ling, ZHANG Yuan-Wei, LIANG Jiu-Qing. Macroscopic Quantum States and Quantum Phase Transition in the Dicke Model[J]. Chin. Phys. Lett., 2012, 29(6): 3107-3110
[2] GUO Yu, LUO Xiao-Bing. Quantum Teleportation between Two Distant Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2012, 29(6): 3107-3110
[3] CAO Gang, WANG Li, TU Tao, LI Hai-Ou, XIAO Ming, GUO Guo-Ping. Pulse Designed Coherent Dynamics of a Quantum Dot Charge Qubit[J]. Chin. Phys. Lett., 2012, 29(3): 3107-3110
[4] CHEN Liang, WAN Wei, XIE Yi, ZHOU Fei, FENG Mang. Microscopic Surface-Electrode Ion Trap for Scalable Quantum Information Processing[J]. Chin. Phys. Lett., 2012, 29(3): 3107-3110
[5] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 3107-3110
[6] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 3107-3110
[7] HOU Shi-Yao, CUI Jing-Xin, LI Jun-Lin** . Experimental Realization of Braunstein's Weight-Decision Algorithm[J]. Chin. Phys. Lett., 2011, 28(9): 3107-3110
[8] XIE Yi, ZHOU Fei, CHEN Liang, WAN Wei, FENG Mang** . Micromotion Compensation and Photoionization of Ions in a Linear Trap[J]. Chin. Phys. Lett., 2011, 28(9): 3107-3110
[9] WANG Chuan, **, HAO Liang, ZHAO Lian-Jie . Implementation of Quantum Private Queries Using Nuclear Magnetic Resonance[J]. Chin. Phys. Lett., 2011, 28(8): 3107-3110
[10] LIN Bing-Sheng**, HENG Tai-Hua . Energy Spectra of the Harmonic Oscillator in a Generalized Noncommutative Phase Space of Arbitrary Dimension[J]. Chin. Phys. Lett., 2011, 28(7): 3107-3110
[11] XUE Peng . Quantum Computing via Singlet-Triplet Spin Qubits in Nanowire Double Quantum Dots[J]. Chin. Phys. Lett., 2011, 28(7): 3107-3110
[12] ZHANG Ji-Ying, ZHOU Zheng-Wei**, GUO Guang-Can . Eliminating Next-Nearest-Neighbor Interactions in the Preparation of Cluster State[J]. Chin. Phys. Lett., 2011, 28(5): 3107-3110
[13] ZHANG Min-Cang**, HUANG-FU Guo-Qing . Analytical Approximation to the -Wave Solutions of the Hulthén Potential in Tridiagonal Representation[J]. Chin. Phys. Lett., 2011, 28(5): 3107-3110
[14] XUE Peng** . Entangling Gate of Dipolar Molecules Coupled to a Photonic Crystal[J]. Chin. Phys. Lett., 2011, 28(5): 3107-3110
[15] ZHU Zhi-Cheng, TU Tao**, GUO Guo-Ping . Multipartite Spin Entangled States in Quantum Dots with a Quantum Databus Based on Nano Electro-Mechanical Resonator[J]. Chin. Phys. Lett., 2011, 28(4): 3107-3110
Viewed
Full text


Abstract