Chin. Phys. Lett.  2008, Vol. 25 Issue (8): 3079-3082    DOI:
Original Articles |
Viscoelastic BISQ Model for Low-Permeability Sandstone with Clay
NIE Jian-Xin1, YANG Ding-Hui2
1State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 1000812Department of Mathematical Sciences, Tsinghua University, Beijing 100084
Cite this article:   
NIE Jian-Xin, YANG Ding-Hui 2008 Chin. Phys. Lett. 25 3079-3082
Download: PDF(160KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A modified BISQ (Biot/Squirt) model for wave propagation in low-permeability sandstone is developed by introducing the viscoelastic mechanism of a porous skeleton into Dvorkin's model. The linear viscoelasticity of the Kelvin--Voigt constitutive law is employed to describe the stress-strain relation of a solid frame with clay while the ultrasonic waves propagate through the fluid-saturated sandstone. The phase velocity and attenuation of two p-waves are given based on the present BISQ model. The comparisons between numerical results and experimental data indicate that our viscoelastic model is more realistic and feasible for wave propagation in the low-permeability sandstone, especially with clay, than traditional BISQ models.
Keywords: 91.60.Lj      83.60.Bc      46.40.Cd     
Received: 18 February 2008      Published: 25 July 2008
PACS:  91.60.Lj (Acoustic properties)  
  83.60.Bc (Linear viscoelasticity)  
  46.40.Cd (Mechanical wave propagation (including diffraction, scattering, and dispersion))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I8/03079
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
NIE Jian-Xin
YANG Ding-Hui
[1] Biot M A 1956a J. Acoust. Soc. Am. 28 168
[2] Biot M A 1956b J. Acoust. Soc. Am. 28 179
[3] Plona T J 1980 Appl. Phys. Lett. 36 259
[4] Berryman J G 1980 Appl. Phys. Lett. 37 382
[5] Johnson D L 1987 J. Fluid Mech. 176 379
[6] Mavko G and Nur A 1979 Geophysics 44 161
[7] Dvorkin J and Nur A 1993 Geophysics 58 524
[8] Dvorkin J et al 1994 Geophysics 59 428
[9] Diallo M S and Appel E 2000 J. Appl. Geophys. 44 313
[10] Yang D H and Zhang Z J 2000 Chin. Sci. Bull. 45 2130
[11] Yang D H and Zhang Z J 2002 Wave Motion 35223
[12] Cui Z W et al 2004 Acta Phys. Sin. 53 3083(in Chinese)
[13] Nie J X et al 2004 Chin. Phys. Lett. 21 572
[14] Carcione J M et al 1988 Geophys. J. R. Astron. Soc.95 597
[15] Du Q Z et al 2002 Acta Phys. Sin. 51 2101(in Chinese)
[16] Cheng Y F et al 2002 Chin. Phys. Lett. 19 445
[17] Klimentos T and McCann C 1990 Geophysics 55998
[18] Nie J X et al 2004 Chin. J. Geophys. 47 1101(in Chinese)
Related articles from Frontiers Journals
[1] WANG Yi-Ze, LI Feng-Ming. Band Gap Properties of Magnetoelectroelastic Grid Structures with Initial Stress[J]. Chin. Phys. Lett., 2012, 29(3): 3079-3082
[2] WANG Yi-Wei, HUANG Chen-Guang, DU Te-Zhuan, WU Xian-Qian, FANG Xin, LIANG Nai-Gang, WEI Yan-Peng**. Shedding Phenomenon of Ventilated Partial Cavitation around an Underwater Projectile[J]. Chin. Phys. Lett., 2012, 29(1): 3079-3082
[3] WEI Yan-Peng**, WANG Yi-Wei, FANG Xin, HUANG Chen-Guang, DUAN Zhu-Ping . A Scaled Underwater Launch System Accomplished by Stress Wave Propagation Technique[J]. Chin. Phys. Lett., 2011, 28(2): 3079-3082
[4] WEN Ji-Hong**, SHEN Hui-Jie, YU Dian-Long, WEN Xi-Sen . Theoretical and Experimental Investigation of Flexural Wave Propagating in a Periodic Pipe with Fluid-Filled Loading[J]. Chin. Phys. Lett., 2010, 27(11): 3079-3082
[5] JIN Yan-Fang, XIONG Chun-Yang, FANG Jing, FERRARI Mauro. Characterization of Wave Dispersion in Viscoelastic Cellular Assemblies by Doublet Mechanics[J]. Chin. Phys. Lett., 2009, 26(8): 3079-3082
[6] LIN Yan-Ting, REN Bo, ZHAO Xiang-Yong, WANG Fei-Fei, WANG Yao-Jin, XU Hai-Qing, LIN Di, LUO Hao-Su. Optical Dispersion Behavior and Band Gap Energy of Relaxor Ferroelectric 0.92Pb(Mg1/3Nb2/3)O3-0.08PbTiO3 Single Crystal[J]. Chin. Phys. Lett., 2009, 26(7): 3079-3082
[7] HU Kai-Xin, ZHU Ke-Qin. Mechanical Analogies of Fractional Elements[J]. Chin. Phys. Lett., 2009, 26(10): 3079-3082
[8] WEN Ji-Hong, YU Dian-Long, WANG Gang, ZHAO Hong-Gang, LIU Yao-Zong, WEN Xi-Sen. Directional Propagation Characteristics of Flexural Waves in Two-Dimensional Thin-Plate Phononic Crystals[J]. Chin. Phys. Lett., 2007, 24(5): 3079-3082
[9] WEN Zhen-Ying, WANG Shun-Jin, ZHANG Xiu-Ming, LI Lei. Solitary Wave Interactions in Granular Media[J]. Chin. Phys. Lett., 2007, 24(10): 3079-3082
[10] HU Guo-Qi, ZHANG Xun-Sheng, BAO De-Song, TANG Xiao-Wei. Double-Humped Transverse Density Profile in Two-Dimensional Chute Flow with Rough Sidewalls[J]. Chin. Phys. Lett., 2006, 23(3): 3079-3082
[11] YU Dian-Long, LIU Yao-Zong, QIU Jing, ZHAO Hong-Gang, LIU Zhi-Ming,. Experimental and Theoretical Research on the Vibrational Gaps in Two-Dimensional Three-Component Composite Thin Plates[J]. Chin. Phys. Lett., 2005, 22(8): 3079-3082
[12] LIU Zhi-Ming, YANG Sheng-Liang, ZHAO Xun,. Ultrawide Bandgap Locally Resonant Sonic Materials[J]. Chin. Phys. Lett., 2005, 22(12): 3079-3082
[13] JIN Yan-Fang, ZHANG Jue, FANG Jing, Mauro Ferrari. Dispersion Analysis of Wave Propagation in Cubic--Tetrahedral Assembly by Doublet Mechanics[J]. Chin. Phys. Lett., 2004, 21(8): 3079-3082
[14] NIE Jian-Xin, YANG Ding-Hui, YANG Hui-Zhu. Wave Dispersion and Attenuation in Partially Saturated Sandstones[J]. Chin. Phys. Lett., 2004, 21(3): 3079-3082
[15] ZHAO Ya-Pu, ZHAO Han, HU Yu-Qun,. Stress Wave Propagation in a Gradient Elastic Medium[J]. Chin. Phys. Lett., 2002, 19(7): 3079-3082
Viewed
Full text


Abstract