Chin. Phys. Lett.  2008, Vol. 25 Issue (7): 2362-2365    DOI:
Original Articles |
Remote Generation of Entanglement for Individual Atoms via Optical Fibres
GUO Yan-Qing1, ZHONG Hai-Yang1, ZHANG Ying-Hui1, SONG He-Shan2
1Department of Physics, Dalian Maritime University, Dalian 1160262School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116023
Cite this article:   
GUO Yan-Qing, ZHONG Hai-Yang, ZHANG Ying-Hui et al  2008 Chin. Phys. Lett. 25 2362-2365
Download: PDF(136KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The generation of atomic entanglement is discussed in a system that atoms are trapped in separate cavities which are connected via optical fibres. Two distant atoms can be projected to Bell-state by synchronized turning off of the local laser fields and then performing a single quantum measurement by a distant controller. The distinct advantage of this scheme is that it works in a regime where Δ≈>>g, which makes the scheme insensitive to cavity strong leakage. Moreover, the fidelity is not affected by atomic spontaneous emission.
Keywords: 03.67.Mn      42.50.Pq     
Received: 16 January 2008      Published: 26 June 2008
PACS:  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I7/02362
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GUO Yan-Qing
ZHONG Hai-Yang
ZHANG Ying-Hui
SONG He-Shan
[1] Moehring D L, Maunz P, Olmschenk S, Younge K C,Matsukevich D N, Duan L M and Monroe C 2007 Nature 44968
[2] Rosenfeld W, Berner S, Volz J, Weber M and Weinfurter H2007 Phys. Rev. Lett. 98 050504
[3] Cho J and Lee H W 2005 Phys. Rev. Lett. 95160501
[4] Razavi M and Shapiro J H 2006 Phys. Rev. A 73042303
[5] Serafini A, Mancini S and Bose S 2006 Phys. Rev.Lett. 96 010503
[6] Zheng S B and Guo G C 2006 Phys. Rev. A 73032329
[7] Duan L M, Madsen M J, Moehring D L, Maunz P, Kohn R N andMonroe C 2006 Phys. Rev. A 73 062324
[8] Yin Z Q and Li F L 2007 Phys. Rev. A 75 012324
[9] Lu D M and Zheng S B 2007 Chin. Phys. Lett. 24596
[10] Ou Y C, Yuan C H and Zhang Z M 2006 J. Phys. B: At.Mol. Opt. Phys. 39 7
[11] Mancini S and Bose S 2004 Phys. Rev. A 70022307
[12] Walls D F and Milburn G J 1994 Quantum Optics(Berlin: Springer) chap 7 p 121
[13] Guo Y Q, Chen J and Song H S 2006 Chin. Phys. Lett. 23 1088
[14] \v{Stemlmachovi\v{c P and Bu\v{zek V 2004 Phys.Rev. A 70 032313
[15] Lee J S and Khitrin A K 2005 Phys. Rev. A 71062338
[16] Coffman V, Kundu J and Wootters W K 2000 Phys. Rev. A 61 052306
[17] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[18] Tittel W, Brendel J, Gisin B, Herzog T, Zbinden H andGisin N 1998 Phys. Rev. A 57 3229
Related articles from Frontiers Journals
[1] XIANG Shao-Hua**,DENG Xiao-Peng,SONG Ke-Hui. Protection of Two-Qubit Entanglement by the Quantum Erasing Effect[J]. Chin. Phys. Lett., 2012, 29(5): 2362-2365
[2] GE Rong-Chun, LI Chuan-Feng, GUO Guang-Can. Spin Dynamics in the XY Model[J]. Chin. Phys. Lett., 2012, 29(3): 2362-2365
[3] M. Ramzan. Decoherence and Multipartite Entanglement of Non-Inertial Observers[J]. Chin. Phys. Lett., 2012, 29(2): 2362-2365
[4] S. P. Toh**, Hishamuddin Zainuddin, Kim Eng Foo,. Randomly Generating Four Mixed Bell-Diagonal States with a Concurrences Sum to Unity[J]. Chin. Phys. Lett., 2012, 29(1): 2362-2365
[5] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 2362-2365
[6] LI Jun-Gang, **, ZOU Jian, **, XU Bao-Ming, SHAO Bin, . Quantum Correlation Generation in a Damped Cavity[J]. Chin. Phys. Lett., 2011, 28(9): 2362-2365
[7] LI Jun-Wang, WU Chun-Wang, DAI Hong-Yi** . Quantum Information Transfer in Circuit QED with Landau–Zener Tunneling[J]. Chin. Phys. Lett., 2011, 28(9): 2362-2365
[8] SUN Ke-Wei**, CHEN Qing-Hu . Ground-State Behavior of the Quantum Compass Model in an External Field[J]. Chin. Phys. Lett., 2011, 28(9): 2362-2365
[9] LIU Zhi-Qiang, LIANG Xian-Ting** . Non-Markovian and Non-Perturbative Entanglement Dynamics of Biomolecular Excitons[J]. Chin. Phys. Lett., 2011, 28(8): 2362-2365
[10] ZHENG An-Shou, **, LIU Ji-Bing, CHEN Hong-Yun . N−Qubit W State of Spatially Separated Atoms via Fractional Adiabatic Passage[J]. Chin. Phys. Lett., 2011, 28(8): 2362-2365
[11] XU Qing, HU Xiang-Ming** . Nonadiabatic Effects of Atomic Coherence on Laser Intensity Fluctuations in Electromagnetically Induced Transparency[J]. Chin. Phys. Lett., 2011, 28(7): 2362-2365
[12] Abbass Sabour, Mojtaba Jafarpour** . A Probability Measure for Entanglement of Pure Two-Qubit Systems and a Useful Interpretation for Concurrence[J]. Chin. Phys. Lett., 2011, 28(7): 2362-2365
[13] XUE Peng . Quantum Computing via Singlet-Triplet Spin Qubits in Nanowire Double Quantum Dots[J]. Chin. Phys. Lett., 2011, 28(7): 2362-2365
[14] YAN Jun-Yan**, WANG Lin-Cheng, YI Xue-Xi . Sudden Transition between Quantum Correlation and Classical Correlation: the Effect of Interaction between Subsystems[J]. Chin. Phys. Lett., 2011, 28(6): 2362-2365
[15] XU Guo-Fu**, TONG Dian-Min . Non-Markovian Effect on the Classical and Quantum Correlations[J]. Chin. Phys. Lett., 2011, 28(6): 2362-2365
Viewed
Full text


Abstract