Chin. Phys. Lett.  2008, Vol. 25 Issue (7): 2350-2353    DOI:
Original Articles |
Numerical Simulation of Bell Inequality's Violation Using Optical Transverse Modes in Multimode Waveguides
FU Jian, GAO Shu-Juan
State Key Lab of Modern Optical Instrumentation, Department of Optical Engineering, Zhejiang University, Hangzhou 310027
Cite this article:   
FU Jian, GAO Shu-Juan 2008 Chin. Phys. Lett. 25 2350-2353
Download: PDF(840KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We numerically demonstrate that `mode-entangled states' based on the transverse modes of classical optical fields in multimode waveguides violate Bell's inequality. Numerically simulating the correlation measurement scheme of Bell's inequality, we obtain the normalized correlation functions of the intensity fluctuations for the two entangled classical fields. By using the correlation functions, the maximum violations of Bell's inequality are obtained. This implies that the two classical fields in the mode-entangled states, although spatially separated, present a nonlocal correlation.
Keywords: 03.65.Ud      03.67.Mn      42.50.Xa     
Received: 16 January 2008      Published: 26 June 2008
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  42.50.Xa (Optical tests of quantum theory)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I7/02350
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FU Jian
GAO Shu-Juan
[1] Nielsen M A and Chuang I L 2000 Quantum Computationand Quantum Information (Cambridge: Cambridge University Press)
[2] Bennett C H et al 1993 Phys. Rev. Lett. 701895
[3] Ekert A and Jozsa R 1998 Philos. Trans. R. Soc.London 356 1769
[4] Lidar D A 2002 Appl. Phys. Lett. 80 2419
[5] Einstein A et al 1935 Phys. Rev. 47 777
[6] Bell J S 1964 Physics 1 195
[7] Reid M D and Walls D F 1986 Phys. Rev. A 341260
[8] Lee K F and Thomas J E 2002 Phys. Rev. Lett. 88 097902
[9] Hofer W A quant-ph/0108141
[10] Krivoshlykov S G et al 1980 Opt. Quant. Elect. 12 463
[11] Krivoshlykov S G 1994 Quantum-Theoretical Formalismfor Inhomogeneous Graded-Index Waveguides (Berlin: Akademie)
[12] Nienhuis G and Allen L 1993 Phys. Rev. A 48656.
[13] Dragoman D 2002 Prog. Opt. 42 424
[14] Marcuse D 1972 Light Transmission Optics (New York:Van Nostrand Reinhold)
[15] Lee K F et al 1999 Opt. Lett. 24 1370
[16] Cheng C C et al 1999 Phys. Rev. Lett. 82 4807
[17] Sipe J E 1995 Phys. Rev. A 52 1875 Bialynicki-Birula I 1996 Progress in OpticsX$\!$X$\!$X$\!$V$\!$I ed Wolf E (Amsterdam: Elsevier)
[18] Kobe D H 1999 Found. Phys. 29 1203
[19] Magyar G and Mandel L 1963 Nature 198 255
[20] Mandel L 1964 Phys. Rev. A 134 10
[21] Mandel L 1965 Rev. Mod. Phys. 37 231
[22] Fu J, Si Z J and Tang S F 2004 Phys. Rev. A 70 042313
[23] Fu J 2003 Proc. SPIE 5105 225
[24] Man'ko M A et al 2001 Phys. Lett. A 288 132
[25] Fedele R and Man'ko M A 2003 Eur. Phys. J. D 27 263
[26] Molmer K 2003 New J. Phys. 5 55.1
[27] Vogels J M 2002 Phys. Rev. Lett. 89 020401
[28] Andersson E et al 2002 Phys. Rev. Lett. 88100401
[29] Clauser J F et al 1969 Phys. Rev. Lett. 23880
[30] Yevick D and Hermansson B 1990 IEEE J. QuantumElectron. 26 109
[31] Huang W P, Xu C L and Cu S T 1992 J. LightwaveTechnol. 10 295
[32] Locatelli A, Pigozzo F M and Modotto D 2002 IEEE J.Select. Topics Quantum Electron. 8 440
Related articles from Frontiers Journals
[1] REN Jie, WU Yin-Zhong, ZHU Shi-Qun. Quantum Discord and Entanglement in Heisenberg XXZ Spin Chain after Quenches[J]. Chin. Phys. Lett., 2012, 29(6): 2350-2353
[2] SHAN Chuan-Jia,**,CAO Shuai,XUE Zheng-Yuan,ZHU Shi-Liang. Anomalous Temperature Effects of the Entanglement of Two Coupled Qubits in Independent Environments[J]. Chin. Phys. Lett., 2012, 29(4): 2350-2353
[3] LI Hong-Rong**,ZHANG Pei,GAO Hong,BI Wen-Ting,ALAMRI M. D.,LI Fu-Li. Non-Equilibrium Quantum Entanglement in Biological Systems[J]. Chin. Phys. Lett., 2012, 29(4): 2350-2353
[4] GE Rong-Chun, LI Chuan-Feng, GUO Guang-Can. Spin Dynamics in the XY Model[J]. Chin. Phys. Lett., 2012, 29(3): 2350-2353
[5] M. Ramzan. Decoherence and Multipartite Entanglement of Non-Inertial Observers[J]. Chin. Phys. Lett., 2012, 29(2): 2350-2353
[6] Piotr Zawadzki**. New View of Ping-Pong Protocol Security[J]. Chin. Phys. Lett., 2012, 29(1): 2350-2353
[7] S. P. Toh**, Hishamuddin Zainuddin, Kim Eng Foo,. Randomly Generating Four Mixed Bell-Diagonal States with a Concurrences Sum to Unity[J]. Chin. Phys. Lett., 2012, 29(1): 2350-2353
[8] LI Jun-Gang, **, ZOU Jian, **, XU Bao-Ming, SHAO Bin, . Quantum Correlation Generation in a Damped Cavity[J]. Chin. Phys. Lett., 2011, 28(9): 2350-2353
[9] SUN Ke-Wei**, CHEN Qing-Hu . Ground-State Behavior of the Quantum Compass Model in an External Field[J]. Chin. Phys. Lett., 2011, 28(9): 2350-2353
[10] LIU Zhi-Qiang, LIANG Xian-Ting** . Non-Markovian and Non-Perturbative Entanglement Dynamics of Biomolecular Excitons[J]. Chin. Phys. Lett., 2011, 28(8): 2350-2353
[11] ZHANG Ai-Ping**, QIANG Wen-Chao, LING Ya-Wen, XIN Hong, YANG Yong-Ming . Geometric Phase for a Qutrit-Qubit Mixed-Spin System[J]. Chin. Phys. Lett., 2011, 28(8): 2350-2353
[12] ZHENG An-Shou, **, LIU Ji-Bing, CHEN Hong-Yun . N−Qubit W State of Spatially Separated Atoms via Fractional Adiabatic Passage[J]. Chin. Phys. Lett., 2011, 28(8): 2350-2353
[13] QIAN Yi, XU Jing-Bo** . Quantum Discord Dynamics of Two Atoms Interacting with Two Quantized Field Modes through a Raman Interaction with Phase Decoherence[J]. Chin. Phys. Lett., 2011, 28(7): 2350-2353
[14] Abbass Sabour, Mojtaba Jafarpour** . A Probability Measure for Entanglement of Pure Two-Qubit Systems and a Useful Interpretation for Concurrence[J]. Chin. Phys. Lett., 2011, 28(7): 2350-2353
[15] PENG Liang, HUANG Yun-Feng**, LI Li, LIU Bi-Heng, LI Chuan-Feng**, GUO Guang-Can . Experimental Demonstration of Largeness in Bipartite Entanglement Sudden Death[J]. Chin. Phys. Lett., 2011, 28(7): 2350-2353
Viewed
Full text


Abstract