Chin. Phys. Lett.  2008, Vol. 25 Issue (6): 2147-2150    DOI:
Articles |
Acceleration of Initially Moving Electrons by a Copropagation Intense Laser Pulse
JING Guo-Liang1;YU Wei2;LI Ying-Jun1;SENECHA Vinod3;CHEN Zhao-Yang4;LEI An-Le2
1School of Mechanics and Civil Engineering, China University of Mining and Technology (Beijing), Beijing 1000832Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 2018003Raja Ramanna Centre for Advanced Technology, Indore-452 013, India4Department of Mechanical Engineering, University of California at Berkeley, Berkeley CA-94720, USA
Cite this article:   
JING Guo-Liang, YU Wei, LI Ying-Jun et al  2008 Chin. Phys. Lett. 25 2147-2150
Download: PDF(142KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Acceleration of an initially moving electron by a copropagation ultra-short ultra-intense laser pulse in vacuum is studied. It is shown that when appropriate laser pulse parameters and focusing conditions are imposed, the acceleration of electron by ascending front of laser pulse can be much stronger compared to the deceleration by descending part. Consequently, the
electron can obtain significantly high net energy gain. We also report the results of the new scheme that enables a second-step acceleration of electron using laser pulses of peak intensity in the range of 1019-1020Wμm2cm2. In the first step the electron acceleration from rest is limited to energies of a few MeV, while in the second step the electron acceleration can be considerably enhanced to about 100MeV energy.
Keywords: 52.35.Re      52.35.Mw      52.25.Qz     
Received: 09 January 2008      Published: 31 May 2008
PACS:  52.35.Re  
  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
  52.25.Qz  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I6/02147
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
JING Guo-Liang
YU Wei
LI Ying-Jun
SENECHA Vinod
CHEN Zhao-Yang
LEI An-Le
[1] Mourou G A, Barty C P J and Perry M D 1998 Phys.Today 51 22
[2] Mourou G A, Tajima T and Bulanov S V 2006 Rev. Mod.Phys. 78 309
[3] Banerjee S, Sepke S, Shah R, Valenzuela A, Maksimchuk Aand Umstadter D 2005 Phys. Rev. Lett. 95 035004
[4] Scully M O and Zubairy M S 1991 Phys. Rev. A 44 2656
[5] Esarey E, Sprangle P and Krall J 1995 Phys. Rev. E 52 5443
[6] Hartemann F V et al 1995 Phys. Rev. E 51 4833
[7] Quesnel B and Mora P 1998 Phys. Rev. E 58 3719
[ 8] Yu W, Yu M Y, Ma J X, Zhang J, Liu S B, Xu Z Z and Li R X2000 Phys. Rev. E 61 R2220
[9] He F, Yu W and Lu P X et al 2003 Phys. Rev. E 68 046407
[10] Hafizi B, Ting A, Esarey E, Sprangle P and Krall J 1997 Phys. Rev. E 55 5924
[11] Troha A L et al 1999 Phys. Rev. E 60 926
[12] Tajima T and Dawson J M 1979 Phys. Rev. Lett. 43 267
[13] Sprangle P et al 2000 Phys. Rev. Lett. 855110 Sprangle P, Esarey E and Krall J 1996 Phys. Plasmas 3 2183
[14] Nishida Y and Sato N 1987 Phys. Rev. Lett. 59653
[15] Takeuchi S and Sugihara R 1998 Phys. Rev. E 58 7874
[16] Gahn C, Tsakiris G D, Pukhov A and Meyer-ter-Vehn J et al1999 Phys. Rev. Lett. 83 4772
[17] Umstadter D, Chen S Y, Maksimghuk A, Mourou G and Wgner R1996 Science 273 472
[18] Malka G, Lefebvre E and Miquel J L 1997 Phys. Rev.Lett. 78 3314; Malka V et al 2002 Science 2981596
[19] Lawson J D 1979 IEEE Trans. Nucl. Sci. 264217
[20] Woodward P 1947 J. IEEE 93 1554
[21] Jackson J D 1975 The Principles of ClassicalElectrodynamics (Wiley: New York) 2nd edn
Related articles from Frontiers Journals
[1] GE Zhe-Yi, YIN Yan**, CHEN De-Peng, ZHUO Hong-Bin, MA Yan-Yun, SHAO Fu-Qiu. Stimulated Raman Backscattering Amplification Using Multiple Pump Pulses[J]. Chin. Phys. Lett., 2012, 29(1): 2147-2150
[2] CHEN Zhao-Quan, **, LIU Ming-Hai***, ZHOU Qi-Yan, HU Ye-Lin, YANG An, ZHU Long-Ji, HU Xi-Wei . Numerical Reproduction of Spatio-Temporal Evolution of Surface Plasmon Polaritons at Dielectric-Plasma Interface[J]. Chin. Phys. Lett., 2011, 28(4): 2147-2150
[3] S. Hussain, * N. Akhtar, Saeed-ur-Rehman . Non Planar Electrostatic Solitary Wave Structures in Negative Ion Degenerate Plasma[J]. Chin. Phys. Lett., 2011, 28(4): 2147-2150
[4] CHEN Ran, XIE Jin-Lin**, YU Chang-Xuan, LIU A-Di, LAN Tao, ZHANG Shou-Biao, HU Guang-Hai, LI Hong, LIU Wan-Dong . Identification of Low-Frequency Zonal Flow in a Linear Magnetic Plasma Device[J]. Chin. Phys. Lett., 2011, 28(2): 2147-2150
[5] M. N. S. Qureshi, **, SHI Jian-Kui, Klaus Torkar, LIU Zhen-Xing . Clarification on Polarity of Bipolar Electric Field Solitary Structures in Space Plasmas with Satellite Observation[J]. Chin. Phys. Lett., 2011, 28(2): 2147-2150
[6] YANG Xiao-Song, LIU San-Qiu, **, LI Xiao-Qing, . Modulational Instability for Gravitoelectromagnetic Perturbations with Longitudinal and Transverse Modes[J]. Chin. Phys. Lett., 2011, 28(10): 2147-2150
[7] LI Xiao-Ling**, WAN Bao-Nian, ZHONG Guo-Qiang, HU Li-Qun, LIN Shi-Yao, ZHANG Xin-Jun, ZANG Qing . Neutron Flux Measurements in an ICRF Mode Conversion Regime Heating Plasmas on HT-7[J]. Chin. Phys. Lett., 2011, 28(10): 2147-2150
[8] ZHENG Jun, SHENG Zheng-Ming, YE Zhi-Cheng, ZHANG Jie, MIMA Kunioki. Cavity-Defect Plasma Bragg Gratings[J]. Chin. Phys. Lett., 2010, 27(4): 2147-2150
[9] S. A. Khan, S. Mahmood, Arshad M. Mirza. Nonplanar Ion-Acoustic Solitons in Electron-Positron-Ion Quantum Plasmas[J]. Chin. Phys. Lett., 2009, 26(4): 2147-2150
[10] YU Xin, ZHAO Qiang. Nonlinear Shock and Kink Waves with Complete Coriolis Force in Earth's Atmosphere[J]. Chin. Phys. Lett., 2009, 26(3): 2147-2150
[11] YAN Xue-Qing, LIU Bi-Cheng, , HE Zhao-Han, SHENG Zheng-Ming, GUO Zhi-Yu, LU Yuan-Rong, FANG Jia-Xun, CHEN Jia-Erh. Mono-Energetic Proton Beam Acceleration in Laser Foil-Plasma Interactions[J]. Chin. Phys. Lett., 2008, 25(9): 2147-2150
[12] WANG Yun-Liang, ZHOU Zhong-Xiang, LU Yan-Zhen, NI Xiao-Dong, SHEN Jiang, ZHANG Yu. Relativistic Magnetosonic Soliton in a Negative-Ion-Rich Magnetized Plasma[J]. Chin. Phys. Lett., 2008, 25(8): 2147-2150
[13] DING Jian, LI Yi, WANG Shui. Numerical Simulation of Solitary Kinetic Alfvén Waves[J]. Chin. Phys. Lett., 2008, 25(7): 2147-2150
[14] WU Bin, WANG Qing-Kang. High Sensitivity Transmission-Type SPR Sensor by Using Metallic--Dielectric Mixed Gratings[J]. Chin. Phys. Lett., 2008, 25(5): 2147-2150
[15] WEI Guang-Mei, GAO Yi-Tian, XU Tao, MENG Xiang-Hua, ZHANG Chun-Yi. Painleve Property and New Analytic Solutions for a Variable-Coefficient Kadomtsev--Petviashvili Equation with Symbolic Computation[J]. Chin. Phys. Lett., 2008, 25(5): 2147-2150
Viewed
Full text


Abstract