Chin. Phys. Lett.  2008, Vol. 25 Issue (6): 2033-2036    DOI:
Articles |
Multi-Slit Diffraction of Evanescent Electromagnetic Waves
SONG Zhen-Ming;CHEN Yong-Yao;XU Bo;LI Yan-Feng;HU Ming-Lie;XING Qi-Rong;ZHANG Zhi-Gang;CHAI Lu;WANG Qing-Yue
Ultrafast Laser Laboratory, Key Laboratory of Optoelectronic Information Technical Science, College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072
Cite this article:   
SONG Zhen-Ming, CHEN Yong-Yao, XU Bo et al  2008 Chin. Phys. Lett. 25 2033-2036
Download: PDF(381KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The well-known Fraunhofer multi-slit diffraction is described as the multi-slit interference modulated by the single-slit diffraction, namely the multiplication between the single-slit diffraction factor and the multi-slit interference factor. By considering the simplified argument we show that the multi-slit diffraction of evanescent waves which are in the near-field region also has the interference and diffraction effects, and that this two-fold effect can be expressed as the convolution of the diffraction factor and the interference factor. Our conclusion could be helpful to understand the contribution of evanescent waves to the optical responses of sub-wavelength structures such as slits and grooves.
Keywords: 42.25.Fx      41.20.Jb      68.35.Ja     
Received: 27 February 2008      Published: 31 May 2008
PACS:  42.25.Fx (Diffraction and scattering)  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  68.35.Ja (Surface and interface dynamics and vibrations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I6/02033
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SONG Zhen-Ming
CHEN Yong-Yao
XU Bo
LI Yan-Feng
HU Ming-Lie
XING Qi-Rong
ZHANG Zhi-Gang
CHAI Lu
WANG Qing-Yue
[1] Lezec H J and Thio T 2004 Opt. Exp. 12 3629
[2] Gay G, Viaris de Lesegno B, Mathevet R, Lezec H J andWeiner J 2005 J. Phys.: Conference Series 19 102
[3] Gay G, Alloschery O, Viaris de Lesegno B, O'Dwyer C,Weiner J and Lezec H J http://arxiv.org/abs/physics/0602094
[4] Ebbesen T W, Lezec H J, Ghaemi H F, Thio T and Wolff P A1998 Nature 391 667
[5] Garc\ia-Vidal F J, Lezec H J, Ebbesen T W andMart\in-Moreno L 2003 Phys. Rev. Lett. 90 213901
[6] Lezec H J, Degiron A, Devaux E, Linke R A,Mart\in-Moreno M, Garc\ia-Vidal F J and Ebbesen T W 2002 Science 297 820
[7] Mart\in-Moreno L, Garc\ia-Vidal F J, Lezec H J,Degiron A and Ebbesen T W 2003 Phys. Rev. Lett. 90167401
[8] Born M and Wolf E 1980 Principles of Optics 6th edn(New York: Pergamon)
[9] Maystre D 1984 Progress in Optics ed Wolf E (NewYork: North-Holland) vol XXI pp 1--67
[10] Bertilone D C 1991 J. Mod. Opt. 38 865
[11] Kowarz M W 1995 Appl. Opt. 34 3055
[12] Chae K M, Le H H, Yim S Y and Park S H 2004 Opt.Exp. 12 2870
Related articles from Frontiers Journals
[1] ZHOU Hai-Chun, YANG Guang, WANG Kai, LONG Hua, LU Pei-Xiang. Coupled Optical Tamm States in a Planar Dielectric Mirror Structure Containing a Thin Metal Film[J]. Chin. Phys. Lett., 2012, 29(6): 2033-2036
[2] ZHANG Li-Wei, ZHANG Ye-Wen, HE Li, WANG You-Zhen. Experimental Study of Tunneling modes in Photonic Crystal Heterostructure Consisting of Single-Negative Materials[J]. Chin. Phys. Lett., 2012, 29(6): 2033-2036
[3] YAN Qin,LU Jian,NI Xiao-Wu**. Measurement of the Velocities of Nanoparticles in Flowing Nanofluids using the Zero-Crossing Laser Speckle Method[J]. Chin. Phys. Lett., 2012, 29(4): 2033-2036
[4] MA Zhi, CAO Chen-Tao, LIU Qing-Fang, WANG Jian-Bo. A New Method to Calculate the Degree of Electromagnetic Impedance Matching in One-Layer Microwave Absorbers[J]. Chin. Phys. Lett., 2012, 29(3): 2033-2036
[5] WANG Jia-Fu, QU Shao-Bo, XU Zhuo, MA Hua, WANG Cong-Min, XIA Song, WANG Xin-Hua, ZHOU Hang. Grating-Coupled Waveguide Cloaking[J]. Chin. Phys. Lett., 2012, 29(3): 2033-2036
[6] LI Cheng-Guo, GAO Yong-Hao, XU Xing-Sheng. Angular Tolerance Enhancement in Guided-Mode Resonance Filters with a Photonic Crystal Slab[J]. Chin. Phys. Lett., 2012, 29(3): 2033-2036
[7] KONG Qi, SHI Qing-Fan, YU Guang-Ze, ZHANG Mei. A New Method for Electromagnetic Time Reversal in a Complex Environment[J]. Chin. Phys. Lett., 2012, 29(2): 2033-2036
[8] TENG Long, ZHANG Rong, XIE Zi-Li, TAO Tao, ZHANG Zhao, LI Ye-Cao, LIU Bin, CHEN Peng, HAN Ping, ZHENG You-Dou. Raman Scattering Study of InxGa1−xN Alloys with Low Indium Compositions[J]. Chin. Phys. Lett., 2012, 29(2): 2033-2036
[9] MA Jian-Yong, FAN Yong-Tao. Guided Mode Resonance Transmission Filters Working at the Intersection Region of the First and Second Leaky Modes[J]. Chin. Phys. Lett., 2012, 29(2): 2033-2036
[10] XU He-Xiu**, WANG Guang-Ming, GONG Jian-Qiang. Compact Dual-Band Zeroth-Order Resonance Antenna[J]. Chin. Phys. Lett., 2012, 29(1): 2033-2036
[11] ZHU Xue-Feng, ZOU Xin-Ye, ZHOU Xiao-Wei, LIANG Bin, CHENG Jian-Chun**. Concealing a Passive Sensing System with Single-Negative Layers[J]. Chin. Phys. Lett., 2012, 29(1): 2033-2036
[12] SHI Fan, LI Wei, WANG Pi-Dong, LI Jun, WU Qiang, WANG Zhen-Hua, ZHANG Xin-Zheng**. Optically Controlled Coherent Backscattering from a Water Suspension of Positive Uniaxial Microcrystals[J]. Chin. Phys. Lett., 2012, 29(1): 2033-2036
[13] MENG Xiu-Qing**, FANG Yun-Zhang, WU Feng-Min. Amphiphilic Bio-molecules/ZnO Interface: Enhancement of Bio-affinity and Dispersibility[J]. Chin. Phys. Lett., 2012, 29(1): 2033-2036
[14] GUO Yu-Bing, CHEN Yong-Hai**, XIANG Ying, QU Sheng-Chun, WANG Zhan-Guo . Photorefractive Effect of a Liquid Crystal Cell with a ZnO Nanorod Doped in Only One PVA Layer[J]. Chin. Phys. Lett., 2011, 28(9): 2033-2036
[15] BAI Yi-Ming**, WANG Jun, CHEN Nuo-Fu, YAO Jian-Xi, ZHANG Xing-Wang, YIN Zhi-Gang, ZHANG Han, HUANG Tian-Mao . Dipolar and Quadrupolar Modes of SiO2/Au Nanoshell Enhanced Light Trapping in Thin Film Solar Cells[J]. Chin. Phys. Lett., 2011, 28(8): 2033-2036
Viewed
Full text


Abstract