Chin. Phys. Lett.  2008, Vol. 25 Issue (5): 1919-1922    DOI:
Original Articles |
Nonlinear Local Lyapunov Exponent and Quantification of Local Predictability
DING Rui-Qiang1;LI Jian-Ping1;HA Kyung-Ja2
1State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 1000292Division of Earth Environmental System, Pusan National University, Busan 609-735, Korea
Download: PDF(217KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Nonlinear local Lyapunov exponent (NLLE) is applied to quantitatively determine the local predictability limit of chaotic systems. As an example, we find that the local predictability limit of Henon attractor varies considerably with time, and some underlying phase-spatial structure does not appear. The local predictability limit of initially adjacent points in phase space may be completely different. This will cause difficulties in making the long-time analogue forecast.
Keywords: 95.10.Fh      92.60.Wc     
Received: 03 December 2007      Published: 29 April 2008
PACS:  95.10.Fh (Chaotic dynamics)  
  92.60.Wc (Weather analysis and prediction)  
TRENDMD:   
Cite this article:   
DING Rui-Qiang, LI Jian-Ping, HA Kyung-Ja 2008 Chin. Phys. Lett. 25 1919-1922
URL:  
http://cpl.iphy.ac.cn/       OR      http://cpl.iphy.ac.cn/Y2008/V25/I5/01919
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DING Rui-Qiang
LI Jian-Ping
HA Kyung-Ja
[1] Eckmann J P and Ruelle D 1985 Rev. Mod. Phys. 57 617
[2] Oseledec V I 1968 Trans. Moscow Math. Soc. 19 197
[3] Lorenz E N 1965 Tellus 17 321
[4] Nese J M 1989 Physica D 35 237
[5] Mukougawa H et al %, Kimoto M and Yoden S1991 J. Atmos. Sci. 48 1231
[6] Kazantsev E 1999 Appl. Math. Comput. 104 217
[7] Ziemann C et al %, Smith L A and Kurths J2000 Phys. Lett. A 4237
[8] Yoden S and Nomura M 1993 J. Atmos. Sci. 50 1531
[9] Lacarra J F and Talagrand O 1988 Tellus A 40 81
[10] Mu M et al %, Duan W S and Wang B2003 Nonlinear Process.Geophys. 10 493
[11] Li J P, Ding R Q and Chen B H 2006 Review and Prospecton the Predictability Study of the Atmosphere (Beijing: ChinaMeteorology Press) p 96
[12] Ding R Q and Li J P 2007 Phys. Lett. A 364 396
[13] Chen B H et al %, Li J P and Ding R Q2006 Sci. Chin. D 49 1111
[14] Henon M 1976 Comm. Math. Phys. 50 69
[15] Bergen R E and Harnack R P 1982 Mon. Wea. Rev. 110 1083
[16] Toth Z 1989 J. Climat. 2 594
[17] Kalnay E and Dalcher A 1987 Mon. Wea. Rev. 115 349
[18] Legras B and Ghil M 1985 J. Atmos. Sci. 42 433
Related articles from Frontiers Journals
[1] Salman Ahmad, YUE Bao-Zeng. Bifurcation and Stability Analysis of the Hamiltonian–Casimir Model of Liquid Sloshing[J]. Chin. Phys. Lett., 2012, 29(6): 1919-1922
[2] LI Dong, WANG Shi-Long, ZHANG Xiao-Hong, YANG Dan, WANG Hui. Fuzzy Impulsive Control of Permanent Magnet Synchronous Motors[J]. Chin. Phys. Lett., 2008, 25(2): 1919-1922
[3] GAO Shou-Ting, ZHOU Fei-Fan,. Water Vapour Potential Vorticity and Its Applications in Tropical Cyclones[J]. Chin. Phys. Lett., 2008, 25(10): 1919-1922
[4] LIU Shu-Tang, SUN Fu-Yan, SHEN Shu-Lan. Chaos Behaviour of Molecular Orbit[J]. Chin. Phys. Lett., 2007, 24(12): 1919-1922
[5] JIA Man, LOU Chen, LOU Sen-Yue,. Relation between the Induced Flow and the Position of Typhoon: Chanchu 2006[J]. Chin. Phys. Lett., 2006, 23(10): 1919-1922
[6] CUI Xiao-Peng, GAO Shou-Ting, ZONG Zhi-Ping, LIU Wen-Ming, LI Xiao-Fan. Physical Mechanism of Formation of the Bimodal Structure in the Meiyu Front System[J]. Chin. Phys. Lett., 2005, 22(12): 1919-1922
[7] CHEN Ju-Hua, WANG Yong-Jiu. Chaos in Einstein-Maxwell-Dust System[J]. Chin. Phys. Lett., 2003, 20(6): 1919-1922
Viewed
Full text


Abstract