Chin. Phys. Lett.  2008, Vol. 25 Issue (5): 1541-1544    DOI:
Original Articles |
Numerical Simulation and Experimental Analysis of Photonic Band Gap in Hollow-Core Photonic Crystal Fibres
YUAN Jin-Hui1;HOU Lan-Tian1;ZHOU Gui-Yao1;WEI Dong-Bin1;CHEN Chao1;WANG Qing-Yue2;HU Ming-Lie2;LIU Bo-Wen2
1Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinghuangdao 0660042Ultrafast Laser Laboratory,. College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072
Cite this article:   
YUAN Jin-Hui, HOU Lan-Tian, ZHOU Gui-Yao et al  2008 Chin. Phys. Lett. 25 1541-1544
Download: PDF(1234KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based on the full-vector plane-wave method (FVPWM), a hollow-core photonic crystal fibre (HC-PCF) fabricated by using the improved stack-and-draw technique is simulated. Under given propagation constants β, several
effective photonic band gaps with different sizes emerge within the visible wavelength range from 575 to 720nm. The fundamental mode and second-order mode lying in a part of PBGs are investigated. In the transmission spectrum tested, the positions of PBGs are discovered to be shifting to shorter wavelengths. The main reason is the existence of interstitial holes at nodes in the cladding region. In the later experiment, green light is observed propagating in the air-core region, and the result is more consistent with our
theoretical simulation.
Keywords: 30.40.Kf      42.81.Cn      71.15.Ap     
Received: 20 September 2007      Published: 29 April 2008
PACS:  30.40.Kf  
  42.81.Cn (Fiber testing and measurement of fiber parameters)  
  71.15.Ap (Basis sets (LCAO, plane-wave, APW, etc.) and related methodology (scattering methods, ASA, linearized methods, etc.))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I5/01541
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YUAN Jin-Hui
HOU Lan-Tian
ZHOU Gui-Yao
WEI Dong-Bin
CHEN Chao
WANG Qing-Yue
HU Ming-Lie
LIU Bo-Wen
Related articles from Frontiers Journals
[1] SHANG Chao, WU Chong-Qing**, LI Zheng-Yong, YANG Shuang-Shou** . A New Distributed Measurement of Birefringence Vectors by P-OTDR Assisted by a High Speed Polarization Analyzer[J]. Chin. Phys. Lett., 2011, 28(9): 1541-1544
[2] JING Lei, **, YAO Jian-Quan, . Single Mode Condition and Power Fraction of Air-Cladding Total Refractive Guided Porous Polymer Terahertz Fibers[J]. Chin. Phys. Lett., 2011, 28(8): 1541-1544
[3] PAN Er-Ming, RUAN Shuang-Chen, GUO Chun-Yu, WANG Yun-Cai, WEI Hui-Feng. Supercontinuum Generation with Output Power of 1.7W Pumped by a Picosecond Laser Pulse[J]. Chin. Phys. Lett., 2010, 27(10): 1541-1544
[4] LI Zheng-Yong, WU Chong-Qing, SHANG Chao, YU Xiang-Zhi . Mueller-Matrix-Based Differential Rotation Method for Precise Measurement of Fiber Birefringence Vector[J]. Chin. Phys. Lett., 2010, 27(10): 1541-1544
[5] SHAO Xi. Indication of Low-Energy BC5 Structures[J]. Chin. Phys. Lett., 2010, 27(1): 1541-1544
[6] YUAN Jin-Hui, YU Chong-Xiu, SANG Xin-Zhu, LI Wen-Jing, ZHOU Gui-Yao, LI Shu-Guang, HOU Lan-Tian. Investigation on Guided-Mode Characteristics of Hollow-Core Photonic Crystal Fibre at Near-Infrared Wavelengths[J]. Chin. Phys. Lett., 2009, 26(3): 1541-1544
[7] YANG Shuang-Shou, WU Chong-Qing, LI Zheng-Yong, ZHANG Ren-Yuan, MENG Qing-Wen. Distributed Measurement of Birefringence by P-OTDR Assisted with Piezoelectric Polarization Controller[J]. Chin. Phys. Lett., 2008, 25(9): 1541-1544
[8] CHEN Wei, LI Jin-Yan, LU Pei-Xiang, LI Shi-Yu, JI Ling-Ling, JIANG Zuo-Wen, ZHANG Ji-Huang, PENG Jing-Gang. All-Fibre Ytterbium-Doped Photonic Crystal Fibre Laser with High Efficiency[J]. Chin. Phys. Lett., 2008, 25(3): 1541-1544
[9] ZHANG Hong, TANG Jin, CHENG Xin-Lu. Structural, Electronic Properties and Chemical Bonding of Borate Li4CaB2O6 under High Pressure: an Ab Initio Investigation[J]. Chin. Phys. Lett., 2008, 25(2): 1541-1544
[10] SHI Zhi-Dong, JI Min-Ning, BAO Huan-Huan. Polarization State Evolution in Fibre Polarization Transformer Influenced by Phase Difference[J]. Chin. Phys. Lett., 2007, 24(7): 1541-1544
[11] WANG Xin-Wei, LI Zhi-Lei, SHENG Qiu-Qin. Optimization of Mechanically Induced Long-Period Fibre Grating Transmission Spectrum[J]. Chin. Phys. Lett., 2007, 24(3): 1541-1544
[12] XU Yong-Zhao, REN Xiao-Min, WANG Zi-Nan, ZHANG Xia, HUANG Yong-Qing. Flat Supercontinuum Generation at 1550nm in a Dispersion-Flattened Microstructure Fibre Using Picosecond Pulse[J]. Chin. Phys. Lett., 2007, 24(3): 1541-1544
[13] LI Yu-Xian. Break Cohesion of Metal Contacts due to Voltage Bias[J]. Chin. Phys. Lett., 2006, 23(9): 1541-1544
[14] XU Yong-Zhao, REN Xiao-Min, ZHANG Xia, HUANG Yong-Qing. A Fully Vectorial Effective Index Method for Accurate Dispersion Calculation of Photonic Crystal Fibres[J]. Chin. Phys. Lett., 2006, 23(9): 1541-1544
[15] JIN Xiao-Feng, ZHANG Xian-Min. Determination of Zero-Dispersion Wavelength by Four-Wave Mixing[J]. Chin. Phys. Lett., 2006, 23(6): 1541-1544
Viewed
Full text


Abstract