Chin. Phys. Lett.  2008, Vol. 25 Issue (4): 1333-1335    DOI:
Original Articles |
Design and Fabrication of Polarization-Independent Micro-Ring Resonators
GENG Min-Ming;JIA Lian-Xi;ZHANG Lei;LIU Yu-Liang;YANG Lin;LI Fang
Laboratory on Optoelectronic Systems, Institute of Semiconductors, Chinese Academy of Sciences, PO Box 912, Beijing 100083
Cite this article:   
GENG Min-Ming, JIA Lian-Xi, ZHANG Lei et al  2008 Chin. Phys. Lett. 25 1333-1335
Download: PDF(501KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Origin of polarization sensitivity of photonic wire waveguides (PWWs) is analysed and the effective refractive indices of two different polarization states are calculated by the three-dimensional full-vector beam propagation
method. We find that PWWs are polarization insensitive if the distribution of its refractive index is uniform and the cross section is square. An MRR based on such a polarization-insensitive PWW is fabricated on an 8-inch silicon-on-insulator wafer using 248-nm deep ultraviolet lithography and reactive ion etching. The quasi-TE mode is resonant at 1542.25nm and 1558.90nm, and the quasi-TM mode is resonant at 1542.12nm and 1558.94nm. The corresponding polarization shift is 0.13nm at the shorter wavelength and 0.04nm at the longer wavelength. Thus the fabricated device is polarization independent. The extinction ratio is larger than 10dB. The 3dB bandwidth is about 2.5nm and the Qvalue is about 620 at 1558.9nm.
Keywords: 42.82.-m      42.79.-e      42.60.Da     
Received: 07 November 2007      Published: 31 March 2008
PACS:  42.82.-m (Integrated optics)  
  42.79.-e (Optical elements, devices, and systems)  
  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I4/01333
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GENG Min-Ming
JIA Lian-Xi
ZHANG Lei
LIU Yu-Liang
YANG Lin
LI Fang
[1]Stephen J E and Richard S 2005 J. Lightwave Technol. 23 1800
[2] Tarek A I, Cao W, Kim Y, Li J, Goldhar J, Ho P T and Lee CH 2003 J. Lightwave Technol. 21 2997
[3] Andrea M and Mario M 2002 J. Lightwave Technol. 20 296
[4] Alastair D M, Michael R C, Christopher J F and Ian B M2004 Proc. SPIE. 5595 359
[5] Otto S 2006 Opt. Commun. 265 175
[6] Edwin J K, Douwe H G, Henry K, Gabriel S, Nigel B andAlfred D 2005 IEEE Photon. Technol. Lett. 17 2358
[7] Yang L, Xin H L, Fang Q, Wang C X, Li F, Li Z M, Liu Y Land Wang Q M 2004 Opt. Engin. 43 2497.
[8] He Y J, Li F and Liu Y L 2005 Chin. Phys. Lett. 22 95
[9] Fang Q, Chen P, Xin H L, Wang C X, Li F and Liu Y L 2005 Chin. Phys. Lett. 22 1452
[10] William R H, Graham T R, Liu A S, Mario P and Simon H2004 Proc. SPIE 5451 276
[11] Tymon B, Michael R W, Milos A P, Peter T R, Luciano S,Franz X K, Erich P I and Henry I S 2007 Nature Photon. 157
[12] Dai D X, Shi Y C and He S L 2006 Appl. Opt. 45 4941
Related articles from Frontiers Journals
[1] ZHOU Ren-Lai, ZHAO Jie, YUANG-Chi, CHEN Zhao-Yu, JU You-Lun, WANG Yue-Zhu. All-Fiber Gain-Switched Thulium-Doped Fiber Laser Pumped by 1.558μm Laser[J]. Chin. Phys. Lett., 2012, 29(6): 1333-1335
[2] LIU Qin,LIU Jian-Li,JIAO Yue-Chun,FENG Jin-Xia,ZHANG Kuan-Shou**. A Stable 22-W Low-Noise Continuous-Wave Single-Frequency Nd:YVO4 Laser at 1.06 µm Directly Pumped by a Laser Diode[J]. Chin. Phys. Lett., 2012, 29(5): 1333-1335
[3] SU Zhou-Ping**,JI Zhi-Cheng,ZHU Zhuo-Wei,QUE Li-Zhi,ZHU Yun. Phase Locking of Laser Diode Array by Using an Off-Axis External Talbot Cavity[J]. Chin. Phys. Lett., 2012, 29(5): 1333-1335
[4] ZHOU Liang,DUAN Kai-Liang**. Phases in a General Chaotic Three-Coupled-Laser Array[J]. Chin. Phys. Lett., 2012, 29(4): 1333-1335
[5] DU Ming-Di,SUN Jun-Qiang**,CHENG Wen-Long. THz Output Improvement in a Photomixer with a Resonant-Cavity-Enhanced Structure[J]. Chin. Phys. Lett., 2012, 29(4): 1333-1335
[6] LIU Hou-Kang,XUE Yu-Hao,LI Zhen,HE Bing**,ZHOU Jun**,DING Ya-Qian,JIAO Meng-Li,LIU Chi,QI Yun-Feng,WEI Yun-Rong,DONG Jing-Xing,LOU Qi-Hong. The Improved Power of the Central Lobe in the Beam Combination and High Power Output[J]. Chin. Phys. Lett., 2012, 29(4): 1333-1335
[7] WU Wen-Han,HUANG Xi,YU Yu**,ZHANG Xin-Liang. RZ-DQPSK Signal Amplitude Regeneration Using a Semiconductor Optical Amplifier[J]. Chin. Phys. Lett., 2012, 29(4): 1333-1335
[8] ZHENG Yao-Hui**,WANG Ya-Jun,PENG Kun-Chi. A High-Power Single-Frequency 540 nm Laser Obtained by Intracavity Frequency Doubling of an Nd:YAP Laser[J]. Chin. Phys. Lett., 2012, 29(4): 1333-1335
[9] GUO Wei-Feng,ZHAO Yong,WANG Wan-Jun,SHAO Hai-Feng,YANG Jian-Yi,JIANG Xiao-Qing**. Design and Fabrication of a Monolithic Optoelectronic Integrated Circuit Chip Based on CMOS Compatible Technology[J]. Chin. Phys. Lett., 2012, 29(4): 1333-1335
[10] M. Afshari Bavil,SUN Xiu-Dong*,HUANG Feng. Frequency Selective Propagation by Employing Fabry–Perot Nanocavities in a Subwavelength Double-slit Structure[J]. Chin. Phys. Lett., 2012, 29(4): 1333-1335
[11] LI Ya-Ming, HU Wei-Xuan, CHENG Bu-Wen, LIU Zhi, WANG Qi-Ming. Remarkable Franz-Keldysh Effect in Ge-on-Si p-i-n Diodes[J]. Chin. Phys. Lett., 2012, 29(3): 1333-1335
[12] ZHU Xue-Feng, ZOU Xin-Ye, ZHOU Xiao-Wei, LIANG Bin, CHENG Jian-Chun**. Concealing a Passive Sensing System with Single-Negative Layers[J]. Chin. Phys. Lett., 2012, 29(1): 1333-1335
[13] CHEN Xiao-Yong, SHENG Xin-Zhi**, WU Chong-Qing. Influence of Multi-Cascaded Semiconductor Optical Amplifiers on the Signal in an Energy-Efficient System[J]. Chin. Phys. Lett., 2012, 29(1): 1333-1335
[14] CHEN Yan-Zhong, LIU Wen-Bin, BO Yong**, JIANG Ben-Xue, XU Jian, KOU Hua-Min, XU Yi-Ting, PAN Yu-Bai, XU Jia-Lin, GUO Ya-Ding, YANG Feng-Tu, PENG Qin-Jun, CUI Da-Fu, JIANG Dong-Liang, XU Zu-Yan . A 526 W Diode-Pumped Nd:YAG Ceramic Slab Laser[J]. Chin. Phys. Lett., 2011, 28(9): 1333-1335
[15] LI Xiao**, XIAO Hu, DONG Xiao-Lin, MA Yan-Xing, XU Xiao-Jun** . Coherent Beam Combining of Two Slab Laser Amplifiers and Second-Harmonic Phase Locking Based on a Multi-Dithering Technique[J]. Chin. Phys. Lett., 2011, 28(9): 1333-1335
Viewed
Full text


Abstract