Chin. Phys. Lett.  2008, Vol. 25 Issue (3): 911-914    DOI:
Original Articles |
High-Order Ultrawideband Pulse Generation from NRZ-DPSK Signals
DONG Jian-Ji;ZHANG Xin-Liang;YU Yu;XU Jing;HUANG De-Xiu
Wuhan National Laboratory for Optoelectronics, School of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074
Cite this article:   
DONG Jian-Ji, ZHANG Xin-Liang, YU Yu et al  2008 Chin. Phys. Lett. 25 911-914
Download: PDF(262KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A simple method to generate ultrawideband (UWB) doublet and triplet from nonreturn-to-zero (NRZ) differential phase shift keying (DPSK) signals is proposed and experimentally demonstrated. The proposed configuration consists of a Mach--Zehnder modulator (MZM) to generate NRZ-DPSK signals, a section of single-mode fibre to form a microwave bandpass filter, which is used to generate doublet pulses, and a Gaussian optical bandpass filter (OBF), which serves as a frequency discriminator to generate higher-order UWB pulses. A pair of polarity-reversed triplet pulses is achieved by locating the optical carrier at the positive and negative linear slopes of the OBF, where the OBF detuning is 0.12nm and -0.2nm, respectively. The spectra of the pair of UWB triplets have a central frequency of 5GHz and 5.6GHz, and have a -10dB bandwidth of 6.9GHz and 8.1GHz, respectively. The UWB pulses remain doublet shape when the light wavelength is located at the peak of the OBF. The spectrum of the doublet has a central frequency of 5.6GHz and a -10dB
bandwidth of 6.9GHz.
Keywords: 33.20.Bx      42.79.Sz      42.81.-i     
Received: 19 August 2007      Published: 27 February 2008
PACS:  33.20.Bx (Radio-frequency and microwave spectra)  
  42.79.Sz (Optical communication systems, multiplexers, and demultiplexers?)  
  42.81.-i (Fiber optics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I3/0911
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DONG Jian-Ji
ZHANG Xin-Liang
YU Yu
XU Jing
HUANG De-Xiu
[1] Aiello G R and Rogerson G D 2003 Microw. Magn. 4 36
[2] Chen X and Kiaei S 2002 IEEE Int. Symp. Circuitsand Systems I 597
[3] Zeng F and Yao J 2006 IEEE Photon. Techn. Lett. 18 2062
[4] Zeng F and Yao J 2006 IEEE Photon. Techn. Lett. 18 823
[5] Dong J, Zhang X, Xu J, Huang D, Fu S and Shum P 2007 Opt. Lett. 32 1223
[6] Dong J, Zhang X., Xu J and Huang D 2007 Opt. Lett. 32 2158
[7] Zeng F, Wang Q and Yao J 2007 Electron. Lett. 43 121
[8] Wang C, Zeng F and Yao J 2007 IEEE Photon. Technol.Lett. 19 137
[9] Wang Q, Zeng F, Blais S and Yao J 2006 Opt. Lett. 31 3083
[10] Chen H, Chen M, Qiu C, Zhang J and Xie S 2007 Electron. Lett. 43 542
[11] Zeng F and Yao J 2005 IEEE J. Lightwave Technol. 23 1721
[12] Gnauck A H and Winzer P J 2005 IEEE J. LightwaveTechnol. 23 115
Related articles from Frontiers Journals
[1] CHEN Wei,MENG Zhou**,ZHOU Hui-Juan,LUO Hong. Effects of Input Spectra on the Threshold of Modulation Instability in a Single-Mode Fiber[J]. Chin. Phys. Lett., 2012, 29(4): 911-914
[2] JIANG Ming, TANG Min-Jin, WU Hao, LI Yan-Jie, XIE Hui-Min. FIB Moiré Gratings and Their Application in the Measurement of Optical Fibers' Mechanical Properties[J]. Chin. Phys. Lett., 2012, 29(3): 911-914
[3] DONG Jian-Ji**, LUO Bo-Wen, ZHANG Yin, LEI Lei, HUANG De-Xiu, ZHANG Xin-Liang. All-Optical Temporal Differentiator Using a High Resolution Optical Arbitrary Waveform Shaper[J]. Chin. Phys. Lett., 2012, 29(1): 911-914
[4] CHEN Xiao-Yong, SHENG Xin-Zhi**, WU Chong-Qing. Influence of Multi-Cascaded Semiconductor Optical Amplifiers on the Signal in an Energy-Efficient System[J]. Chin. Phys. Lett., 2012, 29(1): 911-914
[5] KONG Duan-Hua, ZHU Hong-Liang, LIANG Song, WANG Bao-Jun, BIAN Jing, MA Li, YU Wen-Ke, LOU Cai-Yun . Influence Factors of an All-Optical Recovered Clock from Two-Section DFB Lasers[J]. Chin. Phys. Lett., 2011, 28(9): 911-914
[6] YU Huai-Yong, **, ZHANG Chun-Xi, FENG Li-Shuang, HONG Ling-Fei, WANG Jun-Jie, . Optical Noise Analysis in Dual-Resonator Structural Micro-Optic Gyro[J]. Chin. Phys. Lett., 2011, 28(8): 911-914
[7] HOU Pei-Pei, ZHI Ya-Nan**, ZHOU Yu, SUN Jian-Feng, LIU Li-Ren . An Optical 2×4 90° Hybrid Based on a Birefringent Crystal for a Coherent Receiver in a Free-Space Optical Communication System[J]. Chin. Phys. Lett., 2011, 28(7): 911-914
[8] QIAO Yao-Jun**, LIU Xue-Jun, JI Yue-Feng . Fiber Nonlinearity Post-Compensation by Optical Phase Conjugation for 40Gb/s CO-OFDM Systems[J]. Chin. Phys. Lett., 2011, 28(6): 911-914
[9] YIN Guo-Bing, LI Shu-Guang**, LIU Shuo, WANG Xiao-Yan . The Optimization of Dispersion Properties of Photonic Crystal Fibers Using a Real-Coded Genetic Algorithm[J]. Chin. Phys. Lett., 2011, 28(6): 911-914
[10] ZHU Jia-Hu, HUANG Xu-Guang**, TAO Jin, XIE Jin-Ling . A Full-Duplex Radio-over-Fiber System Based on Frequency Twelvefold[J]. Chin. Phys. Lett., 2011, 28(2): 911-914
[11] XU Ming**, ZHOU Zhen, PU Xiao, JI Jian-Hua, YANG Shu-Wen . Phase Noise Monitor and Reduction by Parametric Saturation Approach in Phase Modulation Systems[J]. Chin. Phys. Lett., 2011, 28(2): 911-914
[12] LI Shu-Guang**, ZHOU Hong-Song, YIN Guo-Bing . Bandgaps of the Chalcogenide Glass Hollow-Core Photonic Crystal Fiber[J]. Chin. Phys. Lett., 2011, 28(11): 911-914
[13] YAN Hai-Feng**, YU Zhong-Yuan, LIU Yu-Min, TIAN Hong-Da, HAN Li-Hong . Novel Propagation Properties of Total Internal Reflection Photonic Crystal Fibres with Rhombic Air Holes[J]. Chin. Phys. Lett., 2011, 28(11): 911-914
[14] DING Lei, JIA Yuan-Yuan, XING Jun-Bo, ZHANG Zhen, SUN Jian-Jun, LU Ke-Cheng. A Two-Stage S-Band Erbium-Doped Fiber Amplifier Based on W-type Erbium-Doped Fiber[J]. Chin. Phys. Lett., 2010, 27(9): 911-914
[15] TIAN Feng, ZHANG Xiao-Guang, LI Jian-Ping, XI Li-Xia. An Experiment for Generating the 14-Tone Stable Carriers Using Recirculating Frequency Shifter[J]. Chin. Phys. Lett., 2010, 27(9): 911-914
Viewed
Full text


Abstract