Chin. Phys. Lett.  2008, Vol. 25 Issue (2): 700-702    DOI:
Original Articles |
Solid Dye Lasers Based on 2-Hydroxypropyl Methacrylate and Methyl Methacrylate Copolymers
FAN Rong-Wei;LI Xiao-Hui;YUE Sai-Sai;JIANG Yu-Gang;XIA Yuan-Qin;CHEN De-Ying
National Key Laboratory of Tunable Lasers, Institute of Optical-Electronics, Harbin Institute of Technology, Harbin 150001
Cite this article:   
FAN Rong-Wei, LI Xiao-Hui, YUE Sai-Sai et al  2008 Chin. Phys. Lett. 25 700-702
Download: PDF(190KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Polymers are a kind of attractive hosts for laser dyes because of their superior optical homogeneity, and high transparency in pumping and lasing range. Copolymers usually have higher damage threshold and better photostability than mono-polymers. Solid dye samples based on copolymer of methyl methacrylate (MMA) with 2-hydroxypropyl methacrylate (HPMA) doped
with 1-, 3-, 5-, 7-, 8-pentamethyl-2, 6-diethylpyrromethene-BF2 (PM567) are prepared. Spectra and lasing properties of the samples are studied. Compared to the samples based on monopolymer polymethyl methacrylate (PMMA), enhanced slope efficiency and photostability are obtained in the copolymers. The highest slope efficiency is 45.1%, and nearly one-fold increase of photostability is obtained. The longest useful lifetime of 4390 pumping pulses is presented with the pump energy as high as 183mJ per pulse at repetition rate of 10Hz. The results indicate that the laser performances of solid dye mediums can be greatly increased using copolymer of MMA with HPMA as host.
Keywords: 78.40.Me      42.70.Jk      42.60.Lh     
Received: 23 October 2007      Published: 30 January 2008
PACS:  78.40.Me (Organic compounds and polymers)  
  42.70.Jk (Polymers and organics)  
  42.60.Lh (Efficiency, stability, gain, and other operational parameters)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I2/0700
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FAN Rong-Wei
LI Xiao-Hui
YUE Sai-Sai
JIANG Yu-Gang
XIA Yuan-Qin
CHEN De-Ying
[1] Soffer B H and McFarland B B 1967 Appl. Phys. Let. 10 266
[2] Peterson O G and Snavely B B 1968 Appl. Phys. Lett. 12 238
[3] Costela A, Garcia-Moreno I, Sastre R 2003 Phys. Chem. Chem.Phys. 5 4745
[4] Susdorf T, Del Agua D and Tyagi A et al 2007 Appl. Phys. B 86 537
[5] Costela A, Garcia-Moreno I, Figuere J M 1996 Opt.Commun. 130 44
[6] Hermes R E, Allik T H and Hutchinson J A 1993 Appl. Phys.Lett. 63 877
[7] Singh S, Kanetkar V R, Sridhar G, Muthuswamy V and Raja K 2003 J. Luminescence 101 286
[8] Rahn M D, King T A 1995 Appl. Opt. 34 8260
[9] Ahmad M, King T A, Cha B H and Lee J 2002 Opt. Laser Technol. 34 445
[10] Giffin S M, McKinnie I T, Wadsworth W J et al 1999 Opt.Commun. 161 163
[11] Calder\'on O G, Guerra J M, Costela A et al 1997 Appl. Phys.Lett. 70 25
[12] Bergmann A, Holzer W, Stark R et al 2001 Chem. Phys. 271 201
Related articles from Frontiers Journals
[1] ZHOU Ren-Lai, ZHAO Jie, YUANG-Chi, CHEN Zhao-Yu, JU You-Lun, WANG Yue-Zhu. All-Fiber Gain-Switched Thulium-Doped Fiber Laser Pumped by 1.558μm Laser[J]. Chin. Phys. Lett., 2012, 29(6): 700-702
[2] DU Ming-Di,SUN Jun-Qiang**,CHENG Wen-Long. THz Output Improvement in a Photomixer with a Resonant-Cavity-Enhanced Structure[J]. Chin. Phys. Lett., 2012, 29(4): 700-702
[3] ZHENG Yao-Hui**,WANG Ya-Jun,PENG Kun-Chi. A High-Power Single-Frequency 540 nm Laser Obtained by Intracavity Frequency Doubling of an Nd:YAP Laser[J]. Chin. Phys. Lett., 2012, 29(4): 700-702
[4] SHEN Ying-Jie, YAO Bao-Quan, DAI Tong-Yu, LI-Gang, DUAN Xiao-Ming, JU You-Lun, WANG Yue-Zhu. Performance of a c− and a-Cut Ho:YAP Laser at Room Temperature[J]. Chin. Phys. Lett., 2012, 29(3): 700-702
[5] LIANG Shi-Xiong, WU Zhao-Xin, ZHAO Xuan-Ke, HOU Xun. Escaped and Trapped Emission of Organic Light-Emitting Diodes[J]. Chin. Phys. Lett., 2012, 29(2): 700-702
[6] SUN Xiao-Qiang, CHEN Chang-Ming, LI Xiao-Dong, WANG Xi-Bin, YANG Tian-Fu, ZHANG Da-Ming, WANG Fei**, XIE Zhi-Yuan**. Polymer Electro-optic Modulator Linear Bias Using the Thermo-optic Effect[J]. Chin. Phys. Lett., 2012, 29(1): 700-702
[7] DING Xin, LI Xue, SHENG Quan, **, SHI Chun-Peng, YIN Su-Jia, LI Bin, YU Xuan-Yi, WEN Wu-Qi, YAO Jian-Quan, . High Power Widely Tunable Narrow Linewidth All-Solid-State Pulsed Titanium-Doped Sapphire Laser[J]. Chin. Phys. Lett., 2011, 28(9): 700-702
[8] DOU Fei, ZHANG Xin-Ping** . Charge Transfer Channels in Formation of Exciplex in Polymer Blends[J]. Chin. Phys. Lett., 2011, 28(9): 700-702
[9] DONG Shu-Guang, YANG Jun-Yi, SHUI Min, YI Chuan-Xiang, LI Zhong-Guo, SONG Ying-Lin** . Measurement of Temperature Change in Nonlinear Optical Materials by Using the Z-Scan Technique[J]. Chin. Phys. Lett., 2011, 28(8): 700-702
[10] MENG Pei-Bei, YAO Bao-Quan**, LI Gang, JU You-Lun, WANG Yue-Zhu . Efficient Tunable Mid-Wave Infrared Laser from 2µm Tm,Ho:YVO4 Pumped Gain−Switched Cr2+:ZnSe Laser[J]. Chin. Phys. Lett., 2011, 28(5): 700-702
[11] REN Xiu-Juan, GUAN Bao-Lu, GUO Shuai, LI Shuo, LI Chuan-Chuan, HAO Cong-Xia, ZHOU Hong-Yi, GUO Xia** . Tunable Vertical-Cavity Surface-Emitting Lasers Integrated with Two Wafers[J]. Chin. Phys. Lett., 2011, 28(2): 700-702
[12] LIU Yang, YE Nan, ZHOU Dai-Bing, WANG Bao-Jun, PAN Jiao-Qing, ZHAO Ling-Juan, WANG Wei . A Sampled Grating DBR Laser Monolithically Integrated by Using SOAs with 22mW Output Power and 51ITU 100GHz Channels over 43nm[J]. Chin. Phys. Lett., 2011, 28(2): 700-702
[13] XU Qi-Yuan**, LIU Zheng-Tang, LI Yang-Ping, WU Qian, ZHANG Shao-Feng . Antireflective Characteristics of Sub-Wavelength Periodic Structure with Square Hole[J]. Chin. Phys. Lett., 2011, 28(2): 700-702
[14] LI Feng-Qin**, SHI Zhu, LI Yong-Min, PENG Kun-Chi . Tunable Single-Frequency Intracavity Frequency-Doubled Ti:Sapphire Laser around 461 nm[J]. Chin. Phys. Lett., 2011, 28(12): 700-702
[15] MIAO Jie-Guang**, PAN Yu-Zhai, QU Shi-Liang . Compact and Highly Efficient Passively Q−Switched Intracavity KTA-OPO at 1.53 and 3.47 µm[J]. Chin. Phys. Lett., 2011, 28(12): 700-702
Viewed
Full text


Abstract