Chin. Phys. Lett.  2008, Vol. 25 Issue (11): 4143-4146    DOI:
Original Articles |
Effect of Interface Roughness and Dislocation Density on Electroluminescence Intensity of InGaN Multiple Quantum Wells
ZHAO De-Gang1, JIANG De-Sheng1, ZHU Jian-Jun1, LIU Zong-Shun1, ZHANG Shu-Ming1, WANG Yu-Tian1, YANG Hui 1,2
1State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, PO Box 912, Beijing 1000832Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215125
Cite this article:   
ZHAO De-Gang, JIANG De-Sheng, ZHU Jian-Jun et al  2008 Chin. Phys. Lett. 25 4143-4146
Download: PDF(387KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Effects of interface roughness and dislocation density on the electroluminescence (EL) intensity of InGaN multiple quantum wells (MQWs) are investigated. It is found that the EL intensity increases with the number of satellite peaks in the x-ray diffraction experiments of InGaN MQW samples. It is indicated that the rough interface will lead the reduction of EL intensity of InGaN MQW samples. It is also found that the EL intensity increases with the decrease of dislocation density which is characterized by the x-ray diffraction measurements. It is suggested that the EL intensity of InGaN MQWs can be improved by decreasing the interface roughness and dislocation density.
Keywords: 78.55.Cr      81.05.Ea      81.10.Bk      81.15.Gh     
Received: 30 July 2008      Published: 25 October 2008
PACS:  78.55.Cr (III-V semiconductors)  
  81.05.Ea (III-V semiconductors)  
  81.10.Bk (Growth from vapor)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I11/04143
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHAO De-Gang
JIANG De-Sheng
ZHU Jian-Jun
LIU Zong-Shun
ZHANG Shu-Ming
WANG Yu-Tian
YANG Hui
[1] Nakamura S, Pearton S and Fasol G 2000 The Blue Laser
Diode (Berlin: Springer)
[2] Lin Y S, Ma K J, Hsu C, Feng S W, Cheng Y C, Liao C C,
Yang C C, Chou C C, Lee C M and Chyi J I 2000 Appl. Phys.
Lett. 77 2988
[3] Jenong T S, Kim J H, Han M S, Lim K Y and Youn C J 2005
J. Crystal Growth 280 357
[4] L\"{u W, Li D B, Li C R, Chen G and Zhang Z 2005
Chin. Phys. Lett. 22 971
[5] Johji N, Lisa S, Hidetoshi F, Yoshihiro K and Kazuhiko I
1997 Appl. Phys. Lett. 70 3431
[6] Cho Y H, Song J J, Keller S, Minsky M S, Hu E, Mishra U K
and DenBaars S P 1998 Appl. Phys. Lett. 73 1128
[7] Pan Z, Wang Y T, Li L H, Wang H, Wei Z, Zhou Z Q, Wu R H
and Wang Q M 1999 Appl. Phys. Lett. 75 223
[8] Feldmann J, Peter G and G\"oel E O 1987 Phys. Rev.
Lett. 59 2337
[9] Jiang H X, Ping E X, Zhou P and Lin J Y 1990 Phys.
Rev. B 41 12949
[10] Keller S, Keller B P, Kapolnek D, Abare A C, Masui H,
Coldren L A, Mishra U K and Den Baars S P 1996 Appl. Phys.
Lett. 68 3147
[11] Sun C K, Chiu T L, Keller S, Wang G, Minsky M S, DenBaars
S P and Bowers J E 1997 Appl. Phys. Lett. 71 425
[12] Shee S K, Kwon Y H, Lam J B, Gainer G H, Park G H, Hwang
S J, Little B D and Song J J 2000 J. Crystal Growth 221
373
[13] Heinke H, Kirchner V, Einfeldt S and Hommel D 2000
Appl. Phys. Lett. 77 2145
[14] Zhao D G, Yang H, Zhu J J, Jiang D S, Liu Z S, Zhang S M,
Wang Y T and Liang J W 2006 Appl. Phys. Lett. 89 112106
[15] Zhao D G, Jiang D S, Yang Hui, Zhu J J, Liu Z S, Zhang S
M, Liang J W, Liu X, Li X Y and Gong H M 2006 Appl. Phys.
Lett. 88 241917
[16] Jiang D S, Zhao D G and Yang H 2007 Phys. Status
Solidi B 244 2878
[17] Rosner S J, Carr E C, Ludowise M J, Girolami G and
Erikson H I 1997 Appl. Phys. Lett. 70 420
[18] Abell J and Moustakas T D 2008 Appl. Phys. Lett.
92 091901
Related articles from Frontiers Journals
[1] WANG Guo-Biao, XIONG Huan, LIN You-Xi, FANG Zhi-Lai, KANG Jun-Yong, DUAN Yu, SHEN Wen-Zhong. Green Emission from a Strain-Modulated InGaN Active Layer[J]. Chin. Phys. Lett., 2012, 29(6): 4143-4146
[2] CHENG Feng-Feng , FA Tao, WANG Xin-Qiang, YAO Shu-De. Dislocation and Elastic Strain in an InN Film Characterized by Synchrotron Radiation X-Ray Diffraction and Rutherford Backscattering/Channeling[J]. Chin. Phys. Lett., 2012, 29(2): 4143-4146
[3] SANG Ling, LIU Jian-Ming, XU Xiao-Qing, WANG Jun, ZHAO Gui-Juan, LIU Chang-Bo, GU Cheng-Yan, LIU Gui-Peng, WEI Hong-Yuan, LIU Xiang-Lin, YANG Shao-Yan, ZHU Qin-Sheng, WANG Zhan-Guo. Morphological Evolution of a-GaN on r-Sapphire by Metalorganic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2012, 29(2): 4143-4146
[4] BI Zhi-Wei, HAO Yue, FENG Qian, GAO Zhi-Yuan, ZHANG Jin-Cheng, MAO Wei, ZHANG Kai, MA Xiao-Hua, LIU Hong-Xia, YANG Lin-An, MEI Nan, CHANG Yong-Ming. AlGaN/GaN Metal-Insulator-Semiconductor High Electron-Mobility Transistor Using a NbAlO/Al2O3 Laminated Dielectric by Atomic Layer Deposition[J]. Chin. Phys. Lett., 2012, 29(2): 4143-4146
[5] XU Sheng-Rui**, LIN Zhi-Yu, XUE Xiao-Yong, LIU Zi-Yang, MA Jun-Cai, JIANG Teng, MAO Wei, WANG Dang-Hui, ZHANG Jin-Cheng, HAO Yue. Comparative Study of the Characteristics of the Basal Plane Stacking Faults of Nonpolar a−Plane and Semipolar (11[J]. Chin. Phys. Lett., 2012, 29(1): 4143-4146
[6] SONG Shi-Wei, LIANG Hong-Wei**, LIU Yang, XIA Xiao-Chuan, SHEN Ren-Sheng, LUO Ying-Min, DU Guo-Tong,. A Study of GaN Grown on SiH4 Pre-Treated 6H-SiC Substrates[J]. Chin. Phys. Lett., 2012, 29(1): 4143-4146
[7] SANG Ling**, WANG Jun**, SHI Kai, WEI Hong-Yuan, JIAO Chun-Mei, LIU Xiang-Lin, YANG Shao-Yan, ZHU Qin-Sheng, WANG Zhan-Guo. The Growth of Semi-Polar ZnO (10[J]. Chin. Phys. Lett., 2012, 29(1): 4143-4146
[8] LI Zhe-Yang, **, HAN Ping, LI Yun, NI Wei-Jiang, BAO Hui-Qiang, LI Yu-Zhu . Epitaxial Growth of 4H-SiC on 4° Off-Axis Substrate for Power Devices[J]. Chin. Phys. Lett., 2011, 28(9): 4143-4146
[9] DAI Ke-Hui, **, WANG Lian-Shan**, HUANG De-Xiu, SOH Chew-Beng, CHUA Soo-Jin, . Influence of Size of ZnO Nanorods on Light Extraction Enhancement of GaN-Based Light-Emitting Diodes[J]. Chin. Phys. Lett., 2011, 28(9): 4143-4146
[10] ZHOU Yan, WANG Hai-Long**, MA Chuan-He, GONG Qian, FENG Song-Lin . Fabrication of Hinged Mirrors Using a Strain-Driven Self-Assembly Method on a GaAs Substrate[J]. Chin. Phys. Lett., 2011, 28(7): 4143-4146
[11] CHENG Zai-Jun, SAN Hai-Sheng**, CHEN Xu-Yuan, **, LIU Bo, FENG Zhi-Hong . Demonstration of a High Open-Circuit Voltage GaN Betavoltaic Microbattery[J]. Chin. Phys. Lett., 2011, 28(7): 4143-4146
[12] SUI Yan-Ping**, YU Guang-Hui . Effect of Mg Doping on the Photoluminescence of GaN:Mg Films by Radio-Frequency Plasma-Assisted Molecular Beam Epitaxy[J]. Chin. Phys. Lett., 2011, 28(6): 4143-4146
[13] PAN Jian-Hai, WANG Xin-Qiang**, CHEN Guang, LIU Shi-Tao, FENG Li, XU Fu-Jun, TANG Ning, SHEN Bo*** . Epitaxy of an Al-Droplet-Free AlN Layer with Step-Flow Features by Molecular Beam Epitaxy[J]. Chin. Phys. Lett., 2011, 28(6): 4143-4146
[14] WU Meng, **, ZENG Yi-Ping, , WANG Jun-Xi, HU Qiang . Investigation of a GaN Nucleation Layer on a Patterned Sapphire Substrate[J]. Chin. Phys. Lett., 2011, 28(6): 4143-4146
[15] WANG Lai**, ZHAO Wei, HAO Zhi-Biao, LUO Yi . Photocatalysis of InGaN Nanodots Responsive to Visible Light[J]. Chin. Phys. Lett., 2011, 28(5): 4143-4146
Viewed
Full text


Abstract