Chin. Phys. Lett.  2008, Vol. 25 Issue (11): 4113-4116    DOI:
Original Articles |
Electrical and Magnetic Properties of FeSi2 Nanowires
PENG Zu-Lin1, S. Liang2
1School of Science, Beijing Institute of Technology, Beijing 1000812Science and Engineering of Materials Program, Arizona State University, Tempe, AZ, 85287, USA
Cite this article:   
PENG Zu-Lin, S. Liang 2008 Chin. Phys. Lett. 25 4113-4116
Download: PDF(326KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We report the characterization of self-assembled epitaxially grown FeSi2 nanowires (NWs) in terms of electrical and magnetic properties. NWs grown by reactive deposition epitaxy (RDE) on silicon (110) show dimensions of 10nm×5nm, and several micrometres in length. By using conductive-AFM (c-AFM), electron transport properties of one single NW is measured, resistivity of a single crystalline FeSi2 NW is estimated to be 225μ\Ω ・cm. Using superconducting quantum interference device (SQUID), we measure a magnetic moment of 0.3±0.1 Bohr magneton per iron atom for these FeSi2 NWs.

Keywords: 73.63.Nm      75.75.+a     
Received: 17 July 2008      Published: 25 October 2008
PACS:  73.63.Nm (Quantum wires)  
  75.75.+a  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I11/04113
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
PENG Zu-Lin
S. Liang
[1] Kittl J A and Hong Q Z 1998 Thin Solid Films
320 110
[2] Reeson K J, Sharpe J, Harry M, Leong D, McKinty C, Kewell
A, Lourenco M, Chen Y L, Shao G and Homewood K P 2000
Microelectron. Eng. 50 223
[3] Preinesberger C, Vandre S, Kalka T and Daehne-Prietsch M J
1998 Phys. D: Appl. Phys. 31 L43
[4] Saitoh W, Yamagami S, Itoh A and Asada M 1999 Jpn. J.
Appl. Phys. I$\!$I 38 L629
[5] Snyder J P, Helms C R and Nishi Y 2002 Appl. Phys.
Lett. 67 1420
[6] Wu Y, Xiang J, Yang C, Lu W and Lieber C M 2004
Nature 430 61
[7] Wan Q, Wang T H and Lin C L 2003 Appl. Phys. Lett.
82 3224
[8] Bost M C and Mahan J E 1985 J. Appl. Phys. 58
2696
[9] Birdwell A G, Glosser R, Leong D N and Homewood K P 2001
J. Appl. Phys. 89 965
[10] Leong D, Harry M, Reeson K J and Homewood K P 1997
Nature 387 686
[11] Okino H, Matsuda I, Hobara R, Hosomura Y, Hasegawa S and
Bennett P A 2005 Appl. Phys. Lett. 86 233108
[12] Comrie C M, Falepin A, Richard O, Bender H and Vantomme A
2004 J. Appl. Phys. 95 2365
[13] Lee K S, Mo Y H, Nahm K S, Shim H W, Suh E K, Kim J R and
Kim J J 2004 Chem. Phys. Lett. 384 215
[14] Thompson R D and Tu K N 1982 Thin Solid Films
93 265
[15] Smirnov A, Tove P A, Pires J S and Norde H 1980
Appl. Phys. Lett. 36 313
[16] Tokarev V V, Kibardin A V, Pyatkova T M and Zarovsky D I
1990 Appl. Surf. Sci. 44 235
[17] Chu S Z, Inoue S, Wada K and Kurashima K 2005
Electrochim. Acta 51 820
[28] Sander M S, Gronsky R, Sands T and Stacy A M 2002
Adv. Mater. 14 665
[19] Furneaux R C, Rigby W R and Davidson A P 1989
Nature 337 147
[20] Thurn-Albrecht T, Schotter J, Kastle G A, Emley N,
Shibauchi T, Krusin-Elbaum L, Guarini K, Black C T, Tuominen M T and
Russell T P 2000 Science 290 2126
[21] Kelly D, Wegrowe J E, Truong T K, Hoffer X and Ansermet J
P 2003 Phys. Rev. B 68 134425
[22] Sellmyer D J 2002 Nature 420 374
[23] Huang Y H, Okumura H, Hadjipanayis G C and Weller D 2002
J. Appl. Phys. 91 6869
Related articles from Frontiers Journals
[1] YUAN Xiao-Bo, REN Jun-Feng, HU Gui-Chao. Effect of Carrier Differences on Magnetoresistance in Organic and Inorganic Spin Valves[J]. Chin. Phys. Lett., 2012, 29(6): 4113-4116
[2] CHEN Feng-Liang,ZHOU Shi-Ming**. Magnetoresistance Effect in Antiferromagnet-Based Nanogranular Films[J]. Chin. Phys. Lett., 2012, 29(4): 4113-4116
[3] ZHONG Ke-Hua**, WENG Zhen-Zhen, FENG Qian, YANG Yan-Min, HUANG Zhi-Gao** . Magnetism and Substrate Effects of Mn3 Clusters on Cu(111), Pd(111) and Ne(111)[J]. Chin. Phys. Lett., 2011, 28(5): 4113-4116
[4] HUO Qiu-Hong, WANG Ru-Zhi, CHEN Si-Ying, XUE Kun, YAN Hui. Spin Transport in a Magnetic Superlattice with Broken Two-Fold Symmetry[J]. Chin. Phys. Lett., 2010, 27(6): 4113-4116
[5] FANG Zhong-Hui, ZHANG Xian-Gao, CHEN Kun-Ji, QIAN Xin-Ye, XU Jun, HUANG Xin-Fan, HE Fei. Observation of Coulomb Oscillations with Single Dot Characteristics in Heavy Doped Ultra Thin SOI Nanowires[J]. Chin. Phys. Lett., 2010, 27(5): 4113-4116
[6] XIANG Jun, SHEN Xiang-Qian, SONG Fu-Zhan, MENG Xian-Feng. Fabrication and Characterization of Mn0.5Zn0.5Fe2O4 Magnetic Nanofibers[J]. Chin. Phys. Lett., 2010, 27(1): 4113-4116
[7] AN Xing-Tao, ZHAO Jin-Rong, , LIU Jian-Jun,. Conductance in an Aharonov-Bohm Interferometer with Parallel-Coupled Double Dots[J]. Chin. Phys. Lett., 2009, 26(9): 4113-4116
[8] ZHUANG Bin, XU Yan, LAI Heng, HUANG Zhi-Gao, CHEN Shui-Yuan, LIN Ying-Bin, LI Shang-Dong, LAI Fa-Chun. Enhanced Magnetoresistance of (La0.67Ca0.33MnO3) Composites Coated byZn0.95Co0.05O[J]. Chin. Phys. Lett., 2009, 26(5): 4113-4116
[9] M. Farahmandjou, S. A. Sebt, S. S. Parhizgar, P. Aberomand, M. Akhavan. Stability Investigation of Colloidal FePt Nanoparticle Systems by Spectrophotometer Analysis[J]. Chin. Phys. Lett., 2009, 26(2): 4113-4116
[10] PENG Zu-Lin, LIANG S., DENG Luo-Gen. Transition Metal Silicide Nanowires Growth and Electrical Characterization[J]. Chin. Phys. Lett., 2009, 26(12): 4113-4116
[11] FA Tao, XIANG Qing-Pei, YAO Shu-De. Fabrication of Co/CoO Exchange Bias System by Ion Implantation and Its Magnetic Properties[J]. Chin. Phys. Lett., 2009, 26(12): 4113-4116
[12] LIANG Qing-Cheng, SHI Jia-Wei, GUO Shu-Xu, LIU Kui-Xue, CAO Jun-Sheng. Dependence of Junction Voltage Saturation on Uniformity and Quality of Laser Diode Bars[J]. Chin. Phys. Lett., 2009, 26(12): 4113-4116
[13] LI Yong-Feng, LIU Gui-Bin, SHI Li-Jie, LIU Bang-Gui. Fe-Vacancy-Induced Ferromagnetism in Tetragonal FeSe Thin Films[J]. Chin. Phys. Lett., 2009, 26(12): 4113-4116
[14] WU Hong-Ye, ZOU Tao, CHENG Zhao-Hua, SUN Young. Vortex Pinning due to Dynamic Spin-Vortex Interaction in aSuperconductor/Ferromagnet Multilayer[J]. Chin. Phys. Lett., 2009, 26(1): 4113-4116
[15] ZHENG Hong, YANG Yong, WEN Fu-Sheng, YI Hai-Bo, ZHOU Dong, LI Fa-Shen. Microwave Magnetic Permeability of Fe3O4 Nanoparticles[J]. Chin. Phys. Lett., 2009, 26(1): 4113-4116
Viewed
Full text


Abstract