Chin. Phys. Lett.  2008, Vol. 25 Issue (1): 250-253    DOI:
Original Articles |
Transport Characteristics of Mesoscopic Radio-Frequency Single Electron Transistor
A. H. Phillips1;N. A. I. Aly2;K. Kirah1;H. E. El-Sayes2
1Faculty of Engineering, Ain-Shams University, Cairo, Egypt2Higher Technological Institute, Ramadan Tenth City, Egypt
Cite this article:   
A. H. Phillips, N. A. I. Aly, K. Kirah et al  2008 Chin. Phys. Lett. 25 250-253
Download: PDF(235KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The transport property of a quantum dot under the influence of external time-dependent field is investigated. The mesoscopic device is modelled as semiconductor quantum dot coupled weakly to superconducting leads via asymmetric double tunnel barriers of different heights. An expression for the current is deduced by using the Landauer--Buttiker formula, taking into
consideration of both the Coulomb blockade effect and the magnetic field. It is found that the periodic oscillation of the current with the magnetic field is controlled by the ratio of the frequency of the applied ac-field to the electron cyclotron frequency. Our results show that the present device operates as a radio-frequency single electron transistor.
Keywords: 73.23.-b      73.40.-c      73.63.-b      85.35.-p     
Received: 15 October 2007      Published: 27 December 2007
PACS:  73.23.-b (Electronic transport in mesoscopic systems)  
  73.40.-c (Electronic transport in interface structures)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
  85.35.-p (Nanoelectronic devices)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I1/0250
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
A. H. Phillips
N. A. I. Aly
K. Kirah
H. E. El-Sayes
[1]Kastner M A 1992 Rev. Mod. Phys. 64 849
[2] Ashoori R C 1996 Nature 379 413
[3]Gammon D 2000 Nature 405 899
[4] Korotkov A N and Paalan M A 1999 Appl. Phys.Lett. 74 4052
[5] Furusaki A, Takayanagi H and Tsukada M T 1992 Phys. Rev. B 45 10563
[6] Aly Arafa H, Phillips Adel H and Kamel R 1999 Egypt. J. Phys. 30 32
[7] Beenakker C W J 1997 Rev. Mod. Phys. 69 731
[8] Aleiner L and Glazman L I 1998 Phys. Rev. B 57 9608
[9] Phillips A H et al 2007 J. of Comp. and Theor.Nanoscience 4 174
[10] Grifoni M and Hanggi P 1998 Phys. Rep. 304 232
[11] Aguado R and Kouwenhoven L P 2000 Phys. Rev.Lett. 84 1986
[12] Knobel R, Yung C S and Cleland A N 2002 Appl.Phys. Lett. 81 532
[13] Zorin A B et al 2000 J. Appl. Phys. 88 2665
[14] Desling P 2001 Phys. Rev. Lett. 86 3376
[15] Cunninghem J et al 2000 Phys. Rev. B 62 1564
[16] Zudov M A 2004 Phys. Rev. B 69 041304(R)
[17] Atallah A S et al 2006 Nano Lett. 1 259
[18] Kovalev A E et al 2004 Solid State Commun. 130 379
Related articles from Frontiers Journals
[1] ZHAO Peng**,LIU De-Sheng,. Electronic Transport Properties of an Anthraquinone-Based Molecular Switch with Carbon Nanotube Electrodes[J]. Chin. Phys. Lett., 2012, 29(4): 250-253
[2] XIA Cai-Juan**, LIU De-Sheng, ZHANG Ying-Tang . Electronic Transport Properties of a Naphthopyran-Based Optical Molecular Switch: an ab initio Study[J]. Chin. Phys. Lett., 2011, 28(9): 250-253
[3] PAN Li-Jun, JIA Yu, **, SUN Qiang, HU Xing . Electronic Properties of Boron Nanotubes under Uniaxial Strain: a DFT study[J]. Chin. Phys. Lett., 2011, 28(8): 250-253
[4] JIA Zhi-Chun, HU Zhen-Peng, ZHAO Ai-Di, LI Zhen-Yu, LI Bin** . Scanning Tunneling Spectroscopy of Metal Phthalocyanines on a Au(111) Surface with a Ni Tip[J]. Chin. Phys. Lett., 2011, 28(7): 250-253
[5] ZHAO Peng**, LIU De-Sheng, ZHANG Ying, WANG Pei-Ji, ZHANG Zhong . Rectifying Properties of a Nitrogen/Boron-Doped Capped-Carbon-Nanotube-Based Molecular Junction[J]. Chin. Phys. Lett., 2011, 28(4): 250-253
[6] OUYANG Fang-Ping, **, CHEN Li-Jian, XIAO Jin, ZHANG Hua . Electronic Properties of Bilayer Zigzag Graphene Nanoribbons: First Principles Study[J]. Chin. Phys. Lett., 2011, 28(4): 250-253
[7] ZHENG Ji-Ming, HUANG Yao-Qing**, REN Zhao-Yu, YANG Hui-Jing, CAO Mao-Sheng** . Electronic Non-Resonant Tunneling through Diaminoacenes: A First-Principles Investigation[J]. Chin. Phys. Lett., 2011, 28(2): 250-253
[8] ZHOU Li-Ling . Unique Properties of Heat Generation in Nanoscale Systems[J]. Chin. Phys. Lett., 2011, 28(12): 250-253
[9] WANG Tao, GUO Qing**, AO Zhi-Min**, LIU Yan, WANG Wen-Bo, SHENG Kuang, YU Bin, . The Tunable Bandgap of AB-Stacked Bilayer Graphene on SiO2 with H2O Molecule Adsorption[J]. Chin. Phys. Lett., 2011, 28(11): 250-253
[10] CAO Wen-Qiang, , LU Ming-Ming, WEN Bo, CHEN Yuan-Lu, LI Hong-Bo, YUAN Jie**, CAO Mao-Sheng** . MWCNTs/SiO2 Composite System: Carrier Transmission, Twin-Percolation and Dielectric Properties[J]. Chin. Phys. Lett., 2011, 28(10): 250-253
[11] Attia A. Awadalla, Adel H. Phillips** . Thermal Shot Noise through Boundary Roughness of Carbon Nanotube Quantum Dots[J]. Chin. Phys. Lett., 2011, 28(1): 250-253
[12] ZHANG Qing-Yun, WANG Bai-Geng, SHEN Rui, XING Ding-Yu. Generation and Quantum Interference of Entangled Electron-Hole Pairs in a Hanbury Brown and Twiss Interferometer[J]. Chin. Phys. Lett., 2010, 27(9): 250-253
[13] CHEN Zhi-Dong, ZHANG Jin-Yu, YU Zhi-Ping. Numerical Analysis of Alternating-Current Small-Signal Response in Graphene Nanoribbons[J]. Chin. Phys. Lett., 2010, 27(8): 250-253
[14] WAN Lang-Hui, YU Yun-Jin, WANG Bin. Spin Filter of Graphene Nanoribbon Based Structure[J]. Chin. Phys. Lett., 2010, 27(8): 250-253
[15] WANG Jing, LIANG Yun-Ye, CHEN Hao, WANG Peng, R. Note, H. Mizuseki, Y. Kawazoe. Self-Consistent Study of Conjugated Aromatic Molecular Transistors[J]. Chin. Phys. Lett., 2010, 27(6): 250-253
Viewed
Full text


Abstract