Chin. Phys. Lett.  2007, Vol. 24 Issue (9): 2482-2485    DOI:
Original Articles |
Entanglement-Assisted Classical Capacity of a Generalized Amplitude Damping Channel
HOU Li-Zhen;FANG Mao-Fa
Department of Physics, Hunan Normal University, Changsha 410081
Cite this article:   
HOU Li-Zhen, FANG Mao-Fa 2007 Chin. Phys. Lett. 24 2482-2485
Download: PDF(232KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The entanglement-assisted capacity of a generalized amplitude damping channel is investigated by using the properties of partial symmetry and concavity of mutual information. The numerical and analytical results of the entanglement-assisted capacity are obtained under certain conditions. It is shown that the entanglement-assisted capacity depends on the channel parameters representing the ambient temperature and dissipation, and the prior entanglement between sender and receiver can approximately double the classical capacity of the generalized amplitude damping channel.
Keywords: 03.67.Hk      03.67.-a     
Received: 04 February 2007      Published: 16 August 2007
PACS:  03.67.Hk (Quantum communication)  
  03.67.-a (Quantum information)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I9/02482
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HOU Li-Zhen
FANG Mao-Fa
[1] Bennett C H and Shor P W 2004 Science 303 1784 Bennett C H, DiVincenzo D P and Smolin J A 1997 Phys. Rev.Lett. 78 3217
[2] Bennett C H, Shor P W, Smolin J A and Thapliyal A V 2002 IEEE Trans. Inform. Theory 48 2637 Chen J L and Kuang L M 2004 Chin. Phys. Lett. 2112
[3] Chen X Y and Qiu P L 2001 Chin. Phys. Lett. 18721 Hou G and Hang M X 2002 Chin. Phys. Lett. 19 4
[4] Gao T, Yan F L and Wang Z X 2005 Chin. Phys. 14893 Wu Y and Yang X 2005 Phys. Rev. A 70 063812
[5] Fahmi A 2006 Preprint quant-ph/0605024 Karpov E, Deams D and Cerf N J 2006 Phys. Rev. A 74032320
[6] Berry D W 2005 Phys. Rev. A 71 032334
[7] Cortese J 2002 Preprint quant-ph/0207128
[8] Bennett C H, Devetak I, Shor P W and Smolin J A2006 Phys. Rev. Lett. 96 156502
[9] Bennett C H, Shor P W, Smolin J A and Thapliyal A V 2001 Preprint quant-ph/0106052
[10] Bennett C H, Shor P W, Smolin J A and Thapliyal 1999 Phys. Rev. Lett. 83 3081
[11]Nielsen M A and Chuang I L 2000 Quantum Computationand Quantum Information (Cambridge: Cambridge University Press) p 380 Fujiwara A 2004 Phys. Rev. A 70 012317
[12] Stinespring W F 1955 Proc. Am. Math. Soc. 6 211
[13] Kraus K 1971 Ann. Phys (N.Y.) 64 311
[14] Kraus K 1983 Effects and Operations: Fundamental Notionsof Quantum Theory (Berlin: Springer) p 190
[15] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[16] Holevo A S 2001 Preprint quant-ph/0106075
[17] Keyl M 2002 Phys. Rep. 369 431
Related articles from Frontiers Journals
[1] 天琦 窦,吉鹏 王,振华 李,文秀 屈,舜禹 杨,钟齐 孙,芬 周,雁鑫 韩,雨晴 黄,海强 马. A Fully Symmetrical Quantum Key Distribution System Capable of Preparing and Measuring Quantum States*

Supported by the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02), and the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (Grant No. IPO2019ZT06).

[J]. Chin. Phys. Lett., 2020, 37(11): 2482-2485
[2] GUO Yu, LUO Xiao-Bing. Quantum Teleportation between Two Distant Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2012, 29(6): 2482-2485
[3] LIU Kui, CUI Shu-Zhen, YANG Rong-Guo, ZHANG Jun-Xiang, GAO Jiang-Rui. Experimental Generation of Multimode Squeezing in an Optical Parametric Amplifier[J]. Chin. Phys. Lett., 2012, 29(6): 2482-2485
[4] Chang Ho Hong,Jin O Heo,Jong in Lim,Hyung jin Yang,**. A Quantum Network System of QSS-QDC Using χ-Type Entangled States[J]. Chin. Phys. Lett., 2012, 29(5): 2482-2485
[5] XIANG Shao-Hua**,DENG Xiao-Peng,SONG Ke-Hui. Protection of Two-Qubit Entanglement by the Quantum Erasing Effect[J]. Chin. Phys. Lett., 2012, 29(5): 2482-2485
[6] QIAN Yi,XU Jing-Bo**. Enhancing Quantum Discord in Cavity QED by Applying Classical Driving Field[J]. Chin. Phys. Lett., 2012, 29(4): 2482-2485
[7] Arpita Maitra, Santanu Sarkar. On Universality of Quantum Fourier Transform[J]. Chin. Phys. Lett., 2012, 29(3): 2482-2485
[8] QIN Meng, ZHAI Xiao-Yue, CHEN Xuan, LI Yan-Biao, WANG Xiao, BAI Zhong. Effect of Spin-Orbit Interaction and Input State on Quantum Discord and Teleportation of Two-Qubit Heisenberg Systems[J]. Chin. Phys. Lett., 2012, 29(3): 2482-2485
[9] Piotr Zawadzki**. New View of Ping-Pong Protocol Security[J]. Chin. Phys. Lett., 2012, 29(1): 2482-2485
[10] GU Shi-Jian**, WANG Li-Gang, WANG Zhi-Guo, LIN Hai-Qing. Repeater-Assisted Zeno Effect in Classical Stochastic Processes[J]. Chin. Phys. Lett., 2012, 29(1): 2482-2485
[11] YU You-Bin**, WANG Huai-Jun, FENG Jin-Xia . Generation of Enhanced Three-Mode Continuously Variable Entanglement[J]. Chin. Phys. Lett., 2011, 28(9): 2482-2485
[12] JI Wei-Bang, WAN Jin-Yin, CHENG Hua-Dong, LIU Liang** . An Optimum Method for a Grooved 2D Planar Ion Trap Design[J]. Chin. Phys. Lett., 2011, 28(7): 2482-2485
[13] YAN Hui, **, ZHU Shi-Liang, DU Sheng-Wang . Efficient Phase-Encoding Quantum Key Generation with Narrow-Band Single Photons[J]. Chin. Phys. Lett., 2011, 28(7): 2482-2485
[14] WANG Xiao-Bo, WANG Jing-Jing, HE Bo, XIAO Lian-Tuan**, JIA Suo-Tang . Photon Counting Optical Time Domain Reflectometry Applying a Single Photon Modulation Technique[J]. Chin. Phys. Lett., 2011, 28(7): 2482-2485
[15] QIAN Yi, XU Jing-Bo** . Quantum Discord Dynamics of Two Atoms Interacting with Two Quantized Field Modes through a Raman Interaction with Phase Decoherence[J]. Chin. Phys. Lett., 2011, 28(7): 2482-2485
Viewed
Full text


Abstract