Chin. Phys. Lett.  2007, Vol. 24 Issue (8): 2227-2229    DOI:
Original Articles |
Gold Nanobelt Reorientation by Molecular Dynamics Simulation
ZHANG Chun-Fang1;WEI He-Lin1;WANG Jian2;LIU Zu-Li1
1Department of Physics, Huazhong University of Science and Technology, Wuhan 4300742Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
Cite this article:   
ZHANG Chun-Fang, WEI He-Lin, WANG Jian et al  2007 Chin. Phys. Lett. 24 2227-2229
Download: PDF(536KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The embedded atom method is used to study the structure stability
of gold nanobelt. The Au nanobelts have a rectangular cross-section with
<100> orientation along the x-, y- and z-axes. Free surfaces are used along the x- and y-directions, and periodic boundary condition is used along z-direction. The simulation is performed at different temperatures and cross-section sizes. Our results show that the structure stability of the Au nanobelts depends on the nanobelt size, initial orientation, boundary conditions and temperature. A critical temperature exists for Au nanobelts to transform from initial <100> nanobelt to final <110> nanobelt. The mechanism of the reorientation is the slip and spread of dislocation through the nanobelt under compressive stress caused by tensile surface-stress components.
Keywords: 31.15.Qg      61.46.-w      61.72.Lk     
Received: 26 December 2006      Published: 25 July 2007
PACS:  31.15.Qg  
  61.46.-w (Structure of nanoscale materials)  
  61.72.Lk (Linear defects: dislocations, disclinations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I8/02227
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Chun-Fang
WEI He-Lin
WANG Jian
LIU Zu-Li
[1] Kang J W and Hwang H J 2001 Nanotechnology 12295
[2] Wang J and Huang H C 2006 Appl. Phys. Lett. 88203112
[3] Shen M, Wei H L, Wang J and Liu Z L 2006 Chin. Phys.Lett. 23 2721
[4] Kondo Y and Takayanagi K 1997 Phys. Rev. Lett. 793455
[5] Kondo Y, Ru Q and Takayanagi K 1999 Phys. Rev. Lett. 82 751
[6] Hasmy A and Medina E 2002 Phys. Rev. Lett. 88096103-1
[7] Diao J K, Gall K, and Dunn M L 2003 Nat. Mater. 2 656
[8] Diao J K, Gall K and Dunn M L 2004 Phys. Rev. B 70 075413
[9] Van Hove M A, Koestner R J, Stair P C, Biberian J P,Kesmodel L L, Bartos I and Somorjai G A 1981 Surf. Sci. 103189
[10] Yamazaki K, Takayanagi K, Tanishiro Y and Yagi K 1988 Surf. Sci. 199 595
[11] Fiorentini V, Methfessel M and Schoffler M 1993 Phys.Rev. Lett. 71 1051
[12] Binnig G K, Rohrer H, Gerber C and Stoll E 1984 Surf.Sci. 144 321
[13] Gibbs D, Ocko B M, Zehner D M and Mochrie S G J 1998 Phys. Rev. B 38 7303
Related articles from Frontiers Journals
[1] ZHAO Kun-Yu,ZENG Hua-Rong**,SONG Hong-Zhang,HUI Sen-Xing,LI Guo-Rong,YIN Qing-Rui. The Observation of Martensite and Magnetic Domain Structures in Ni53Mn24Ga23 Shape Memory Alloys by Scanning Electron Acoustic Microscopy and Scanning Thermal Microscopy[J]. Chin. Phys. Lett., 2012, 29(5): 2227-2229
[2] PAN Rui-Qin. Diameter and Temperature Dependence of Thermal Conductivity of Single-Walled Carbon Nanotubes[J]. Chin. Phys. Lett., 2011, 28(6): 2227-2229
[3] ZHANG Xiao-Fei, ZHANG Chu-Hang, LV Neng, XIE Jian-Ping, YE Gao-Xiang,. Condensation Behavior of Ag Aggregates on Liquid Surfaces[J]. Chin. Phys. Lett., 2010, 27(9): 2227-2229
[4] LI Ji-Ling, YANG Guo-Wei, ZHAO Ming-Wen, LIU Xiang-Dong, XIA Yue-Yuan**. Tuning Bandgap of Si-C Heterofullerene-Based Aanotubes by H Adsorption[J]. Chin. Phys. Lett., 2010, 27(9): 2227-2229
[5] GAO Yuan, ZHUANG Zhuo, LIU Zhan-Li, ZHAO Xue-Chuan, ZHANG Zhao-Hui. Characteristic Sizes for Exhaustion-Hardening Mechanism of Compressed Cu Single-Crystal Micropillars[J]. Chin. Phys. Lett., 2010, 27(8): 2227-2229
[6] SEETAWAN Tosawat, WONG-UD-DEE Gjindara, THANACHAYANONT Chanchana, AMORNKITBUMRUNG Vittaya. Molecular Dynamics Simulation of Strontium Titanate[J]. Chin. Phys. Lett., 2010, 27(2): 2227-2229
[7] TIAN Bao-Li, DU Zu-Liang, MA Yan-Mei, LI Xue-Fei, CUI Qi-Liang, CUI Tian, LIU Bing-Bing, ZOU Guang-Tian. Raman Investigation of Sodium Titanate Nanotubes under Hydrostatic Pressures up to 26.9GPa[J]. Chin. Phys. Lett., 2010, 27(2): 2227-2229
[8] WANG Sheng-Jie, ZHANG Chun-Lai, WANG Zhi-Guo. Melting of Single-Walled Silicon Carbide Nanotubes: Density Functional Molecular Dynamics Simulation[J]. Chin. Phys. Lett., 2010, 27(10): 2227-2229
[9] SONG Hao-Peng, FANG Qi-Hong, LIU You-Wen. Behavior of an Extended Dislocation near an Elliptical Blunt Crack[J]. Chin. Phys. Lett., 2009, 26(9): 2227-2229
[10] ZHANG Yang, YU Da-Peng. Novel Route to Fabrication of Metal-Sandwiched Nanoscale Tapered Structures[J]. Chin. Phys. Lett., 2009, 26(8): 2227-2229
[11] LI Gong, DONG Yan-Guo, HUANG Lei, HE Guo-Wei, LIU Ri-Ping, WANGWen-Kui. High-Pressure Annealing Effect on Glass Transformation Temperature of Zr41Ti14Cu12.5Ni10Be22.5 Bulk Metallic Glass[J]. Chin. Phys. Lett., 2009, 26(8): 2227-2229
[12] YAN Zheng-Xin, DENG Jun, WANF Ya-Min, LIU Wei. Comparative Study of Activity of Different Agings of Aluminum Nanopowders[J]. Chin. Phys. Lett., 2009, 26(8): 2227-2229
[13] LI Yan-Rong, LIU Hai-Qing, LIU Ying, SU Shao-Kui, WANG Yun-Ping. Magnetic Relaxation Study on Single Crystals of Ni4 Single-Molecule Magnets[J]. Chin. Phys. Lett., 2009, 26(7): 2227-2229
[14] ILIC D. I., SATARIC M. V., RALEVIC N.. Microtubule as a Transmission Line for Ionic Currents[J]. Chin. Phys. Lett., 2009, 26(7): 2227-2229
[15] LI Qin-Tao, LI Zhi-Gang, XIE Qiao-Ling, GONG Jin-Long, ZHU De-Zhang. Controlled Evolution of Silicon Nanocone Arrays Induced by Ar+ Sputtering at Room Temperature[J]. Chin. Phys. Lett., 2009, 26(5): 2227-2229
Viewed
Full text


Abstract