Chin. Phys. Lett.  2007, Vol. 24 Issue (7): 2048-2051    DOI:
Original Articles |
Electronic Structures of Wurtzite GaN with Ga and N Vacancies
PANG Chao1;SHI Jun-Jie1;ZHANG Yan1;K. S. A. Butcher2;T. L. Tansley2;J. E.
Downes2;SHANG Jia-Xiang3
1State Key Laboratory for Mesoscopic Physics, and School of Physics, Peking University, Beijing 1008712Semiconductor Science and Technology Laboratories, Department of Physics, Macquarie University, New South Wales 2109, Australia3School of Materials Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100083
Cite this article:   
PANG Chao, SHI Jun-Jie, ZHANG Yan et al  2007 Chin. Phys. Lett. 24 2048-2051
Download: PDF(329KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The electronic band structures of wurtzite GaN with Ga and N vacancy defects are investigated by means of the first-principles total energy calculations in the neutral charge state. Our results show that the band structures can be significantly modified by the Ga and N vacancies in the GaN samples. Generally, the width of the valence band is reduced and the band gap is enlarged. The defect-induced bands can be introduced in the band gap of GaN due to the Ga and N vacancies. Moreover, the GaN with high density of N
vacancies becomes an indirect gap semiconductor. Three defect bands due to Ga vacancy defects are created within the band gap and near the top of the valence band. In contrast, the N vacancies introduce four defect bands within the band gap. One is in the vicinity of the top of the valence band, and the others are near the bottom of the conduction band. The physical origin of the defect bands and modification of the band structures due to the Ga and N vacancies are analysed in depth.
Keywords: 71.20.-b      71.55.-i      71.55.Eq     
Received: 09 April 2007      Published: 25 June 2007
PACS:  71.20.-b (Electron density of states and band structure of crystalline solids)  
  71.55.-i (Impurity and defect levels)  
  71.55.Eq (III-V semiconductors)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I7/02048
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
PANG Chao
SHI Jun-Jie
ZHANG Yan
K. S. A. Butcher
T. L. Tansley
J. E.Downes
SHANG Jia-Xiang
[1] Davis R F 1993 Physica B 185 1
[2] Nakamura S et al 1994 Appl. Phys. Lett. 64 1687
[3] Nakamura S et al 1995 Jpn. J. Appl. Phys. 34 L1332
[4] Nakamura S et al 1996 Jpn. J. Appl. Phys. 35 L74
[5] Razeghi M and Rogalski A 1997 J. Appl. Phys 79 7433
[6] Duboz J Y and Khan M A 1998 Group I$\!$I$\!$I NitrideSemiconductor Compounds (Oxford: Oxford University Press) chap 9 p 343
[7] Butcher K S A et al 2002 J. Appl. Phys. 92 3397
[8] Butcher K S A et al 2005 Phys. Status Solidi C 2 2263
[9] Butcher K S A et al 2004 J. Appl. Phys. 95 6124
[10] Boguslawski P et al 1995 Phys. Rev. B 51 17255
[11] Neugebauer J and Van de Walle Chris G 1994 Phys. Rev.B 50 8067
[12] Stampfl C and Van de Walle C G 1998 Appl. Phys. Lett. 72 459
[13] Stampfl C and Van de Walle C G 1999 Phys. Rev. B 59 5521
[14] Stampfl C et al 2000 Phys. Rev. B 61 R7846
[15] Van de Walle Chris G and J\"org N 2004 J. Appl. Phys. 95 3851
[16] Gorczyca I et al 1999 Phys. Rev. B 60 8147
[17] Xie J J et al 1996 Chin. Phys. Lett. 13 867
[18] Xu P S et al 2001 Chin. Phys. Lett. 18 1252
[19] Li H P et al 2003 Chin. Phys. Lett. 20 114
[20] Ke S H et al 1993 Chin. Phys. Lett. 10 748
[21] Segall M D et al 2002 J. Phys.: Condens. Matter 14 2717
[22] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[23] Perdew J P et al 1996 Phys. Rev. Lett. 77 3865
[24] Grossner U et al 1998 Phys. Rev. B 58 R1722; Vanderbilt D 1990 Phys. Rev. B 41 7892
[25] Hunt R W et al 1993 Physica B 185 415
[26] Yeo Y C et al 1998 J. Appl. Phys. 83 1429
[27] Rezaei B et al 2006 Physica B 371 107
[28] Pugh S K et al 1999 Semicond. Sci. Technol. 14 23
[29] Perlin P et al 1993 Jpn. J. Appl. Phys. I 32 334
[30] Monemar B 1974 Phys. Rev. B 10 676
[31] Chen G D, Smith et al 1996 Appl. Phys. Lett. 682784
[32] Dingle R et al 1971 Phys. Rev. 4 1211
[33] Majewski J A et al 1996 Materials Research SocietyInternet J. Nitride Semicond. Res. 1 30
[34] Butcher K S A and Tansley T L 2005 Superlatt.Microstruct. 38 1
Related articles from Frontiers Journals
[1] LIU Shan-Yu, ZHANG Wen-Tao, WENG Hong-Ming, ZHAO Lin, LIU Hai-Yun, JIA Xiao-Wen, LIU Guo-Dong, DONG Xiao-Li, ZHANG Jun, MAO Zhi-Qiang, CHEN Chuang-Tian, XU Zu-Yan, DAI Xi, FANG Zhong, ZHOU Xing-Jiang. Effect of Cleaving Temperature on the Surface and Bulk Fermi Surface of Sr2RuO4 Investigated by High Resolution Angle-Resolved Photoemission[J]. Chin. Phys. Lett., 2012, 29(6): 2048-2051
[2] ZHOU Tie-Ge,LIU Zhi-Qiang**,ZUO Xu. First-Principles Study of Doped Half-Metallic Spinels: Cu0.5Zn0.5Cr2S4, Cu0.5Cd0.5Cr2S4, Li0.5Zn0.5Cr2O4 and Li0.5Zn0.5Cr2S4[J]. Chin. Phys. Lett., 2012, 29(4): 2048-2051
[3] CUI Jin-Ming, CHEN Xiang-Dong, FAN Le-Le, GONG Zhao-Jun, ZOU Chong-Wen, SUN Fang-Wen, HAN Zheng-Fu, GUO Guang-Can. Generation of Nitrogen-Vacancy Centers in Diamond with Ion Implantation[J]. Chin. Phys. Lett., 2012, 29(3): 2048-2051
[4] JI Chang-Jian**, ZHANG Cheng-Qiang, ZHAO Gang, WANG Wen-Jing, SUN Gang, YUAN Hui-Min, HAN Qi-Feng . Preparation and Properties of Diluted Magnetic Semiconductors GaMnAs by Low-Temperature Molecular Epitaxy[J]. Chin. Phys. Lett., 2011, 28(9): 2048-2051
[5] DAI Ke-Hui, **, WANG Lian-Shan**, HUANG De-Xiu, SOH Chew-Beng, CHUA Soo-Jin, . Influence of Size of ZnO Nanorods on Light Extraction Enhancement of GaN-Based Light-Emitting Diodes[J]. Chin. Phys. Lett., 2011, 28(9): 2048-2051
[6] XIE Zi-Li**, ZHANG Rong, LIU Bin, XIU Xiang-Qian, SU Hui, LI Yi, HUA Xue-Mei, ZHAO Hong, CHEN Peng, HAN Ping, SHI Yi, ZHENG You-Dou . Growth and Properties of Blue and Amber Complex Light Emitting InGaN/GaN Multi-Quantum Wells[J]. Chin. Phys. Lett., 2011, 28(8): 2048-2051
[7] U. Yesilgul**, F. Ungan, E. Kasapoglu, H. Sari, I. Sö, kmen . Effects of an Intense Laser Field and Hydrostatic Pressure on the Intersubband Transitions and Binding Energy of Shallow Donor Impurities in a Quantum Well[J]. Chin. Phys. Lett., 2011, 28(7): 2048-2051
[8] SHAO Xi** . Prediction of a Low-Dense BC2N Phase[J]. Chin. Phys. Lett., 2011, 28(5): 2048-2051
[9] WANG Yong, **, YU Nai-Sen, LI Ming, LAU Kei-May . Improved AlGaN/GaN HEMTs Grown on Si Substrates Using Stacked AlGaN/AlN Interlayer by MOCVD[J]. Chin. Phys. Lett., 2011, 28(5): 2048-2051
[10] JIA Xiao-Wen, LIU Yan, YU Li, HE Jun-Feng, ZHAO Lin, ZHANG Wen-Tao, LIU Hai-Yun, LIU Guo-Dong, HE Shao-Long, ZHANG Jun, LU Wei, WU Yue, DONG Xiao-Li, SUN Li-Ling, WANG Gui-Ling, ZHU Yong, WANG Xiao-Yang, PENG Qin-Jun, WANG Zhi-Min, ZHANG Shen-Jin, YANG Feng, XU Zu-Yan, CHEN Chuang-Tian, ZHOU Xing-Jiang** . Growth, Characterization and Fermi Surface of Heavy Fermion CeCoIn5 Superconductor[J]. Chin. Phys. Lett., 2011, 28(5): 2048-2051
[11] SHI Feng, , ZHANG Yi-Jun, CHENG Hong-Chang, ZHAO Jing, XIONG Ya-Juan, CHANG Ben-Kang** . Theoretical Revision and Experimental Comparison of Quantum Yield for Transmission-Mode GaAlAs/GaAs Photocathodes[J]. Chin. Phys. Lett., 2011, 28(4): 2048-2051
[12] JIANG Jiu-Xing, **, JIN Shan, WANG Zhen-Hua, TAN Chang-Long . Electronic Structure and Optical Properties of Layered Ternary Carbide Ti3AlC2[J]. Chin. Phys. Lett., 2011, 28(3): 2048-2051
[13] HOU Qi-Feng**, WANG Xiao-Liang, XIAO Hong-Ling, WANG Cui-Mei, YANG Cui-Bai, YIN Hai-Bo, LI Jin-Min, WANG Zhan-Guo . Cathodoluminescence of Yellow and Blue Luminescence in Undoped Semi-insulating GaN and n-GaN[J]. Chin. Phys. Lett., 2011, 28(3): 2048-2051
[14] CHENG Fang, LIU Ting-Yu**, ZHANG Qi-Ren, QIAO Hai-Ling, ZHOU Xiu-Wen . Computer Simulation of the Electronic Structures and Absorption Spectra for a KMgF3 Crystal Containing a Potassium Vacancy[J]. Chin. Phys. Lett., 2011, 28(3): 2048-2051
[15] GAO Li-Peng, HAN Pei-De**, MAO Xue, FAN Yu-Jie, HU Shao-Xu, ZHAO Chun-Hua, MI Yan-Hong . Deep Energy Levels Formed by Se Implantation in Si[J]. Chin. Phys. Lett., 2011, 28(3): 2048-2051
Viewed
Full text


Abstract