Chin. Phys. Lett.  2007, Vol. 24 Issue (6): 1467-1470    DOI:
Original Articles |
A Cavity-QED Scheme for Generating Long-Lived Maximally Entangled States
XIANG Shao-Hua 1,2,3;SHAO Bin3;SONG Ke-Hui 1,2;ZOU Jian3
1Department of Physics and Electronic Information Science, Huaihua University, Huaihua 4180082Research Institute of Information Science, Huaihua University, Huaihua 4180083Department of Physics, Beijing Institute of Technology, Beijing 100081
Cite this article:   
XIANG Shao-Hua, SHAO Bin, SONG Ke-Hui et al  2007 Chin. Phys. Lett. 24 1467-1470
Download: PDF(300KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose a potentially practical scheme to generate two-atom maximally entangled states by the large-detuning interaction between two three-level ∧-type atoms and coherent optical fields. Conditioned on the results of detecting cavity field, four pairs of atomic maximally entangled states with unity fidelity and high successful probability can be prepared. We also investigate the influence of the cavity dissipation on the generated entangled
states and discuss the experimental feasibility of our scheme.
Keywords: 03.67.Mn      42.50.Dv      03.65.Yz     
Received: 09 December 2006      Published: 17 May 2007
PACS:  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  42.50.Dv (Quantum state engineering and measurements)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I6/01467
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XIANG Shao-Hua
SHAO Bin
SONG Ke-Hui
ZOU Jian
[1]Bell J S 1965 Physics 1 195
[2]Bennett C H et al 1993 Phys. Rev. Lett. 70 1895 Wang Y H et al 2006 Chin. Phys. Lett. 23 3142
[3] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 692881 Liu W T et al 2006 Chin. Phys. Lett. 23 3148
[4] Bourennane M et al 2001 Phys. Rev. A 64 012306
[5] Kwiat P G et al 1995 Phys. Rev. Lett. 75 4337 Pan J W and Zeilinger A 1998 Phys. Rev. A 57 2208
[6] Zheng S B et al 2002 Phys. Rev. Lett. 85 2392 Solano E et al 2003 Phys. Rev. Lett. 90 027903 Liao X P et al 2006 Chin. Phys. Lett. 23 3138
[7]S\o rensen A and M\o lmer K 2000 Phys. Rev. A 62022311 Fang M F et al 2000 Phys. Rev. A 63 013812
[8]Wang X G et al 2001 Phys. Rev. A 64 012313 Pang C Y et al 2006 Chin. Phys. Lett. 23 3145
[9] Bouwmeester D et al 1999 Phys. Rev. Lett. 82 1345 Pan J W et al 2000 Nature 403 515 Pan J W et al 2001 Phys. Rev. Lett. 86 4435
[10] Hagley E et al 1997 Phys. Rev. Lett. 71 1 Ranschenbentel A et al 2000 Science 288 2024 Ranschenbentel A et al 2001 Phys. Rev. Lett. 87 037902
[11]Turchette Q A et al 1998 Phys. Rev. Lett. 81 3631
[12] Rowe M A et al 2001 Nature (London) 409 791
[13]Lougovski P 2005 Phys. Rev. A 71 013811
[14] Xu L et al 1994 Phys. B 95 507 Song K H et al 2002 Eur. Phys. J. D 19 267
[15] Plenion M B et al 1999 Phys. Rev. A 59 2468
[16] Seevinck M 2002 Phys. Rev. A 65 012107
[17] Raimond J M et al 2001 Rev. Mod. Phys. 73 565
[18] Jan E et al 2002 Phys. Rev. A 65 050302
[19] Brune M et al 1994 Phys. Rev. Lett. 72 3339
[20] Yurke B and Stoler D 1986 Phys. Rev. Lett. 57 13
Related articles from Frontiers Journals
[1] GUO Yu, LUO Xiao-Bing. Quantum Teleportation between Two Distant Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2012, 29(6): 1467-1470
[2] REN Jie, WU Yin-Zhong, ZHU Shi-Qun. Quantum Discord and Entanglement in Heisenberg XXZ Spin Chain after Quenches[J]. Chin. Phys. Lett., 2012, 29(6): 1467-1470
[3] XIANG Shao-Hua**,DENG Xiao-Peng,SONG Ke-Hui. Protection of Two-Qubit Entanglement by the Quantum Erasing Effect[J]. Chin. Phys. Lett., 2012, 29(5): 1467-1470
[4] SHAN Chuan-Jia,**,CAO Shuai,XUE Zheng-Yuan,ZHU Shi-Liang. Anomalous Temperature Effects of the Entanglement of Two Coupled Qubits in Independent Environments[J]. Chin. Phys. Lett., 2012, 29(4): 1467-1470
[5] CHEN Peng,QIAN Jun,CHEN Dong-Yuan,HU Zheng-Feng**,WANG Yu-Zhu**. Interference of a Narrowband Biphoton with Double Electromagnetically Induced Transparency in an N-Type System[J]. Chin. Phys. Lett., 2012, 29(4): 1467-1470
[6] GAO Gui-Long,SONG Fu-Quan,HUANG Shou-Sheng,WANG Yan-Wei,FAN Zhi-Qiang,YUAN Xian-Zhang,JIANG Nian-Quan**. Producing and Distinguishing χ-Type Four-Qubit States in Flux Qubits[J]. Chin. Phys. Lett., 2012, 29(4): 1467-1470
[7] LI Hong-Rong**,ZHANG Pei,GAO Hong,BI Wen-Ting,ALAMRI M. D.,LI Fu-Li. Non-Equilibrium Quantum Entanglement in Biological Systems[J]. Chin. Phys. Lett., 2012, 29(4): 1467-1470
[8] CAO Gang, WANG Li, TU Tao, LI Hai-Ou, XIAO Ming, GUO Guo-Ping. Pulse Designed Coherent Dynamics of a Quantum Dot Charge Qubit[J]. Chin. Phys. Lett., 2012, 29(3): 1467-1470
[9] GE Rong-Chun, LI Chuan-Feng, GUO Guang-Can. Spin Dynamics in the XY Model[J]. Chin. Phys. Lett., 2012, 29(3): 1467-1470
[10] CAO Ming-Tao, HAN Liang, QI Yue-Rong, ZHANG Shou-Gang, GAO Hong, LI Fu-Li. Calculation of the Spin-Dependent Optical Lattice in Rubidium Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(3): 1467-1470
[11] M. Ramzan. Decoherence and Multipartite Entanglement of Non-Inertial Observers[J]. Chin. Phys. Lett., 2012, 29(2): 1467-1470
[12] S. P. Toh**, Hishamuddin Zainuddin, Kim Eng Foo,. Randomly Generating Four Mixed Bell-Diagonal States with a Concurrences Sum to Unity[J]. Chin. Phys. Lett., 2012, 29(1): 1467-1470
[13] LI Jun-Gang, **, ZOU Jian, **, XU Bao-Ming, SHAO Bin, . Quantum Correlation Generation in a Damped Cavity[J]. Chin. Phys. Lett., 2011, 28(9): 1467-1470
[14] SUN Ke-Wei**, CHEN Qing-Hu . Ground-State Behavior of the Quantum Compass Model in an External Field[J]. Chin. Phys. Lett., 2011, 28(9): 1467-1470
[15] LIU Zhi-Qiang, LIANG Xian-Ting** . Non-Markovian and Non-Perturbative Entanglement Dynamics of Biomolecular Excitons[J]. Chin. Phys. Lett., 2011, 28(8): 1467-1470
Viewed
Full text


Abstract