Chin. Phys. Lett.  2007, Vol. 24 Issue (5): 1252-1255    DOI:
Original Articles |
Focusing of Partially Coherent Vortex Beams by an Aperture Lens
RAO Lian-Zhou 1,2; PU Ji-Xiong1
1Department of Electronic Science and Technology, Huaqiao University, Quanzhou 3620212Department of Physics and Electromechanical Engineering, Sanming University, Sanming 365004
Cite this article:   
RAO Lian-Zhou, PU Ji-Xiong 2007 Chin. Phys. Lett. 24 1252-1255
Download: PDF(491KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The focusing properties of partially coherent vortex wave fields are studied. Expressions are derived for the intensity distribution and the degree of coherence near the geometrical focus. It is found that the size of coherence vortex dark core in the focal region depends on the topological charges and normalized coherence lengths. It is found that the desired vortex dark core near the geometrical focus can be generated by choosing appropriate values of parameters. The degree of coherence possesses a pair of phase singularities regions in the geometrical focus neighbourhood.
Keywords: 42.25.Kb      42.25.Fx      41.85.Lc     
Received: 14 December 2006      Published: 23 April 2007
PACS:  42.25.Kb (Coherence)  
  42.25.Fx (Diffraction and scattering)  
  41.85.Lc (Particle beam focusing and bending magnets, wiggler magnets, and quadrupoles)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I5/01252
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
RAO Lian-Zhou
PU Ji-Xiong
[1] Soskin M S and Vasnetsov M V 2001 Prog. Opt. 42 219
[2] Nye J F and Berry M V 1974 Proc. R. Soc. London A 336165
[3] Zhao C L et al %, Wang L G, Lu X H and Wang Y Z2006 Chin. Phys. Lett. 23 2411
[4] Gao Z H And L\"u B D 2006 Chin. Phys. Lett. 23 106
[5] Schouten H F, Gbur G, Visser T D and Wolf E 2003 Opt. Lett. 28 968
[6] Gbur G and Visser T D 2003 Opt. Commun. 222 117
[7] Bogatyryova G et al %, Fel'de C, Polyanskii P, Ponomarenko S and Wolf E2003 Opt. Lett. 28 878
[8] Gbur G, Visser T D and Wolf E 2004 J. Opt. A 6 S239
[9] Gbur G and Visser T D 2006 Opt. Commun. 259 428
[10] Palacios D M et al %, Maleev I D, Marathay A S and Swartzlander G A2004 Phys. Rev. Lett. 92 143905
[11] Tao S H, Yuan X C, Lin J and Burge R E 2006 Opt. Exp. 14 535
[12] Schmitz C H J, Uhrig K, Spatz J P and Curtis J E 2006 Opt.Exp. 14 6604
[13] Helseth L H 2004 Opt. Commun. 229 85
[14] Bekshaev A Y, Soskin M S and Vasnetsov M V 2004 Opt. Commun. 241 237
[15] Mmaleev I D and Swartzlander G A 2003 J. Opt. Soc. Am. B 20 1169
[16] Mmaleev I D et al %, Palacios D M, Marathay A S and Swartzlander G A2004 J. Opt. Soc. Am. B 21 1895
[17] Mandel L and Wolf E 1995 Optical Coherence and QuantumOptics (Cambridge: Cambridge University Press)
[18] Fischer D G and Visser T D 2004 J. Opt. Soc. Am. A 212097
Related articles from Frontiers Journals
[1] YAN Qin,LU Jian,NI Xiao-Wu**. Measurement of the Velocities of Nanoparticles in Flowing Nanofluids using the Zero-Crossing Laser Speckle Method[J]. Chin. Phys. Lett., 2012, 29(4): 1252-1255
[2] LI Cheng-Guo, GAO Yong-Hao, XU Xing-Sheng. Angular Tolerance Enhancement in Guided-Mode Resonance Filters with a Photonic Crystal Slab[J]. Chin. Phys. Lett., 2012, 29(3): 1252-1255
[3] KONG Qi, SHI Qing-Fan, YU Guang-Ze, ZHANG Mei. A New Method for Electromagnetic Time Reversal in a Complex Environment[J]. Chin. Phys. Lett., 2012, 29(2): 1252-1255
[4] MA Jian-Yong, FAN Yong-Tao. Guided Mode Resonance Transmission Filters Working at the Intersection Region of the First and Second Leaky Modes[J]. Chin. Phys. Lett., 2012, 29(2): 1252-1255
[5] SHI Fan, LI Wei, WANG Pi-Dong, LI Jun, WU Qiang, WANG Zhen-Hua, ZHANG Xin-Zheng**. Optically Controlled Coherent Backscattering from a Water Suspension of Positive Uniaxial Microcrystals[J]. Chin. Phys. Lett., 2012, 29(1): 1252-1255
[6] LIN Jie, **, CHENG Jing . Lensless Ghost Diffraction with Partially Coherent Sources: Effects of the Source Size, Transverse Coherence, Detector Size and Defocusing Length[J]. Chin. Phys. Lett., 2011, 28(9): 1252-1255
[7] GUO Yu-Bing, CHEN Yong-Hai**, XIANG Ying, QU Sheng-Chun, WANG Zhan-Guo . Photorefractive Effect of a Liquid Crystal Cell with a ZnO Nanorod Doped in Only One PVA Layer[J]. Chin. Phys. Lett., 2011, 28(9): 1252-1255
[8] BAI Yi-Ming**, WANG Jun, CHEN Nuo-Fu, YAO Jian-Xi, ZHANG Xing-Wang, YIN Zhi-Gang, ZHANG Han, HUANG Tian-Mao . Dipolar and Quadrupolar Modes of SiO2/Au Nanoshell Enhanced Light Trapping in Thin Film Solar Cells[J]. Chin. Phys. Lett., 2011, 28(8): 1252-1255
[9] ZHAO Yan-Zhong**, SUN Hua-Yan, ZHENG Yong-Hui . An Approximate Analytical Propagation Formula for Gaussian Beams through a Cat-Eye Optical Lens under Large Incidence Angle Condition[J]. Chin. Phys. Lett., 2011, 28(7): 1252-1255
[10] ZHANG Jin-Long, ** . Analysis of Optical Vortices in the Near Field of a Thin Metal Film[J]. Chin. Phys. Lett., 2011, 28(5): 1252-1255
[11] LIU Hong-Wei**, KAN Qiang, WANG Chun-Xia, HU Hai-Yang, XU Xing-Sheng, CHEN Hong-Da . Light Extraction Enhancement of GaN LED with a Two-Dimensional Photonic Crystal Slab[J]. Chin. Phys. Lett., 2011, 28(5): 1252-1255
[12] XU Qi-Yuan**, LIU Zheng-Tang, LI Yang-Ping, WU Qian, ZHANG Shao-Feng . Antireflective Characteristics of Sub-Wavelength Periodic Structure with Square Hole[J]. Chin. Phys. Lett., 2011, 28(2): 1252-1255
[13] SUN Ji-Yu, **, XIE Hong . Recurrence Formulas for the Mie Series[J]. Chin. Phys. Lett., 2011, 28(10): 1252-1255
[14] LIN Zhi-Wei**, XU Xin, ZHANG Xiao-Juan, FANG Guang-You . An Inverse Electromagnetic Scattering Method for One-Dimensional Inhomogeneous Media[J]. Chin. Phys. Lett., 2011, 28(1): 1252-1255
[15] LIN Zhi-Wei**, XU Xin, ZHANG Xiao-Juan, FANG Guang-You . Electromagnetic Scattering and Inverse Scattering of Layered Media with a Slightly Rough Surface[J]. Chin. Phys. Lett., 2011, 28(1): 1252-1255
Viewed
Full text


Abstract