Chin. Phys. Lett.  2007, Vol. 24 Issue (5): 1238-1241    DOI:
Original Articles |
Surface Planar Ion Chip for Linear Radio-Frequency Paul Traps
WAN Jin-Yin;QU Qiu-Zhi;ZHOU Zi-Chao;LI Xiao-Lin;WANG Yu-Zhu;LIU Liang
Key Laboratory for Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800
Cite this article:   
WAN Jin-Yin, QU Qiu-Zhi, ZHOU Zi-Chao et al  2007 Chin. Phys. Lett. 24 1238-1241
Download: PDF(969KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose a surface planar ion chip which forms a linear radio frequency Paul ion trap. The electrodes reside in the two planes of a chip, and the trap axis is located above the chip surface. Its electric field and potential distribution are similar to the standard linear radio frequency Paul ion trap. This ion trap geometry may be greatly meaningful for quantum information processing.
Keywords: 39.25.+k      32.80.Pj      03.67.-a     
Received: 07 February 2007      Published: 23 April 2007
PACS:  39.25.+k  
  32.80.Pj  
  03.67.-a (Quantum information)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I5/01238
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WAN Jin-Yin
QU Qiu-Zhi
ZHOU Zi-Chao
LI Xiao-Lin
WANG Yu-Zhu
LIU Liang
[1] Cirac J I and Zoller P 1995 Phys. Rev. Lett. 74 4091
[2] Wineland D J et al 1998 J. Res. Natl. Inst. Stand. Technol. 103 259
[3] Kielpinski D et al %, Monroe C and Wineland D J2002 Nature 417709
[4] DeVoe R G 1998 Phys. Rev. A 58 910
[5] Cirac J I and Zoller P 2000 Nature 404 579
[6] Duan L M et al 2004 Quantum Inf. Comput. 4 165
[7] Rowe M A et al 2002 Quantum Inf. Comput. 2 257
[8] Barrett M D et al 2004 Nature 429 737
[9] Hensinger W K et al 2006 Appl. Phys. Lett. 88 034101
[10] Stick D et al 2006 Nature Phys. 2 36
[11] Wineland D J et al 2005 Proceedings of the XVIIInternational Conference on Laser Spectroscopy, Avemore, Scotlandedited by Hinds E A, Ferguson A and Riis E (Singapore: World Scientific)p 393
[12] Chiaverini J et al 2005 Quantum Inf. Comput. 5 419
[13] Pearson C E et al 2006 Phys. Rev. A 73 032307
[14] Seidelin S et al 2006 Phys. Rev. Lett. 96 253003
[15] Paul W 1990 Rev. Mod. Phys. 62 531
[16] Li X L et al 2005 Chin. Phys. Lett. 22 2526
Related articles from Frontiers Journals
[1] 天琦 窦,吉鹏 王,振华 李,文秀 屈,舜禹 杨,钟齐 孙,芬 周,雁鑫 韩,雨晴 黄,海强 马. A Fully Symmetrical Quantum Key Distribution System Capable of Preparing and Measuring Quantum States*

Supported by the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02), and the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (Grant No. IPO2019ZT06).

[J]. Chin. Phys. Lett., 2020, 37(11): 1238-1241
[2] LIU Kui, CUI Shu-Zhen, YANG Rong-Guo, ZHANG Jun-Xiang, GAO Jiang-Rui. Experimental Generation of Multimode Squeezing in an Optical Parametric Amplifier[J]. Chin. Phys. Lett., 2012, 29(6): 1238-1241
[3] XIANG Shao-Hua**,DENG Xiao-Peng,SONG Ke-Hui. Protection of Two-Qubit Entanglement by the Quantum Erasing Effect[J]. Chin. Phys. Lett., 2012, 29(5): 1238-1241
[4] QIAN Yi,XU Jing-Bo**. Enhancing Quantum Discord in Cavity QED by Applying Classical Driving Field[J]. Chin. Phys. Lett., 2012, 29(4): 1238-1241
[5] Arpita Maitra, Santanu Sarkar. On Universality of Quantum Fourier Transform[J]. Chin. Phys. Lett., 2012, 29(3): 1238-1241
[6] QIN Meng, ZHAI Xiao-Yue, CHEN Xuan, LI Yan-Biao, WANG Xiao, BAI Zhong. Effect of Spin-Orbit Interaction and Input State on Quantum Discord and Teleportation of Two-Qubit Heisenberg Systems[J]. Chin. Phys. Lett., 2012, 29(3): 1238-1241
[7] GU Shi-Jian**, WANG Li-Gang, WANG Zhi-Guo, LIN Hai-Qing. Repeater-Assisted Zeno Effect in Classical Stochastic Processes[J]. Chin. Phys. Lett., 2012, 29(1): 1238-1241
[8] YU You-Bin**, WANG Huai-Jun, FENG Jin-Xia . Generation of Enhanced Three-Mode Continuously Variable Entanglement[J]. Chin. Phys. Lett., 2011, 28(9): 1238-1241
[9] Abbass Sabour, Mojtaba Jafarpour** . A Probability Measure for Entanglement of Pure Two-Qubit Systems and a Useful Interpretation for Concurrence[J]. Chin. Phys. Lett., 2011, 28(7): 1238-1241
[10] QIAN Yi, XU Jing-Bo** . Quantum Discord Dynamics of Two Atoms Interacting with Two Quantized Field Modes through a Raman Interaction with Phase Decoherence[J]. Chin. Phys. Lett., 2011, 28(7): 1238-1241
[11] MA Yan**, LI Tong-Bao, WU Wen, XIAO Yi-Li, ZHANG Ping-Ping, GONG Wei-Gang . Laser-Focused Atomic Deposition for Nanascale Grating[J]. Chin. Phys. Lett., 2011, 28(7): 1238-1241
[12] JI Wei-Bang, WAN Jin-Yin, CHENG Hua-Dong, LIU Liang** . An Optimum Method for a Grooved 2D Planar Ion Trap Design[J]. Chin. Phys. Lett., 2011, 28(7): 1238-1241
[13] ZHANG Ji-Ying, ZHOU Zheng-Wei**, GUO Guang-Can . Eliminating Next-Nearest-Neighbor Interactions in the Preparation of Cluster State[J]. Chin. Phys. Lett., 2011, 28(5): 1238-1241
[14] SHI Yan-Li, MEI Feng, YU Ya-Fei, ZHANG Zhi-Ming** . Controlled Phase Gate Based on an Electron Floating on Helium[J]. Chin. Phys. Lett., 2011, 28(5): 1238-1241
[15] WANG Zhen, WANG He-Ping, WANG Zhi-Xi**, FEI Shao-Ming . Local Unitary Equivalent Consistence for n−Party States and Their (n-1)-Party Reduced Density Matrices[J]. Chin. Phys. Lett., 2011, 28(2): 1238-1241
Viewed
Full text


Abstract