Chin. Phys. Lett.  2007, Vol. 24 Issue (5): 1147-1150    DOI:
Original Articles |
Scalable Quantum Secret Sharing Extended from Quantum Key Distribution
LIU Wei-Tao;LIANG Lin-Mei;LI Cheng-Zu;YUAN Jian-Min
Department of Physics, National University of Defense Technology, Changsha 410073
Cite this article:   
LIU Wei-Tao, LIANG Lin-Mei, LI Cheng-Zu et al  2007 Chin. Phys. Lett. 24 1147-1150
Download: PDF(244KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We suggest a general approach for extending quantum key distribution (QKD) protocols possessing discrete rotational symmetry into quantum secret sharing (QSS) schemes among multiparty, under certain conditions. Only local unitary operations are required for this generalization based on the almost mature technologies of QKD. Theoretically, the number of the participating partners can be arbitrary high. As an application of this method, we propose a fault-tolerant QSS protocol based on a fault-tolerant QKD implementation. The 6-state protocol is also discussed.
Keywords: 03.67.Dd      03.67.Hk     
Received: 08 February 2007      Published: 23 April 2007
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I5/01147
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Wei-Tao
LIANG Lin-Mei
LI Cheng-Zu
YUAN Jian-Min
[1] Schneier B 1996 Applied Cryptography (New York:Wiley)
[2] Gisin N et al 2002 Rev. Mod. Phys. 74 145
[3] Zukowski M et al 1998 Acta Phys. Pol. 93 187
[4] Hillery M et al 1999 Phys. Rev. A 59 1829
[5] Cleve R et al 1999 Phys. Rev. Lett. 83 648
[6] Karlsson A et al 1999 Phys. Rev. A 59 162
[7] Tittel W et al 2001 Phys. Rev. A 63 042301
[8]Chen Y A et al 2005 Phys. Rev. Lett. 95 200502
[9] Choi S, Lee S and Chi D P 2004 arXiv: quant-ph/0403172
[10] Nihira H and Stroud C R Jr 2005 Phys. Rev. A 72022337
[11] Bagherinezhad S et al 2003 Phys. Rev. A 67 044302
[12] Cabello A 2002 Phys. Rev. Lett. 89 100402
[13] Xiao L et al 2004 Phys. Rev. A 69 052307
[14] Deng F G et al 2005 Phys. Lett. A 340 43
[15] Guo G P and Guo G C 2003 Phys. Lett. A 310 247
[16] Yan F L and Gao T 2005 Phys. Rev. A 72 012304
[17] Schmid C et al 2005 Phys. Rev. Lett. 95 230505
[18] Kurtsiefer C et al 2002 Nature 419 450
[19] Aspelmeyer M et al 2003 Science 301 621
[20]Peng C Z et al 2005 Phys. Rev. Lett. 94 150501
[21]Liu W T et al 2006 Chin. Phys. Lett. 23 275
[22] Wang X B 2005 Phys. Rev. A 72050304(R)
[23]Zhang Q et al 2006 Phys. Rev. A 73 020301(R)
[24]Wang X B 2005 Phys. Rev. Lett. 94 230503
[25]Zhao Y et al 2006 Phys. Rev. Lett. 96 070502
[26]Scarani V et al 2004 Phys. Rev. Lett. 92 057901
[27] Bennett C H and Brassard G 1984 Proc. IEEE Internat.Conf. Computers, Systems and Signal Processing (New York: IEEE) p 175
[28] Ekert A K 1991 Phys. Rev. Lett. 67 661
[29] Shirokoff D et al 2006 arXiv:quant-ph/0604198
[30]Shor P W and Preskill J 2000 Phys. Rev. Lett. 85441
[31]Gisin N et al 2005 arXiv:quant-ph/0507063
[32]Liu W T et al 2006 Chin. Phys. Lett. 23 3148
[33]Buzek V et al 1999 Phys. Rev. A 60 R2626
[34]Wang X B 2007 Appl. Phys. Lett. 90 031110
Related articles from Frontiers Journals
[1] 天琦 窦,吉鹏 王,振华 李,文秀 屈,舜禹 杨,钟齐 孙,芬 周,雁鑫 韩,雨晴 黄,海强 马. A Fully Symmetrical Quantum Key Distribution System Capable of Preparing and Measuring Quantum States*

Supported by the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02), and the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (Grant No. IPO2019ZT06).

[J]. Chin. Phys. Lett., 2020, 37(11): 1147-1150
[2] GUO Yu, LUO Xiao-Bing. Quantum Teleportation between Two Distant Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2012, 29(6): 1147-1150
[3] Chang Ho Hong,Jin O Heo,Jong in Lim,Hyung jin Yang,**. A Quantum Network System of QSS-QDC Using χ-Type Entangled States[J]. Chin. Phys. Lett., 2012, 29(5): 1147-1150
[4] Piotr Zawadzki**. New View of Ping-Pong Protocol Security[J]. Chin. Phys. Lett., 2012, 29(1): 1147-1150
[5] WANG Chuan, **, HAO Liang, ZHAO Lian-Jie . Implementation of Quantum Private Queries Using Nuclear Magnetic Resonance[J]. Chin. Phys. Lett., 2011, 28(8): 1147-1150
[6] ZHANG Peng**, LI Chao, . Feasibility of Double-Click Attack on a Passive Detection Quantum Key Distribution System[J]. Chin. Phys. Lett., 2011, 28(7): 1147-1150
[7] YAN Hui, **, ZHU Shi-Liang, DU Sheng-Wang . Efficient Phase-Encoding Quantum Key Generation with Narrow-Band Single Photons[J]. Chin. Phys. Lett., 2011, 28(7): 1147-1150
[8] WANG Xiao-Bo, WANG Jing-Jing, HE Bo, XIAO Lian-Tuan**, JIA Suo-Tang . Photon Counting Optical Time Domain Reflectometry Applying a Single Photon Modulation Technique[J]. Chin. Phys. Lett., 2011, 28(7): 1147-1150
[9] WANG Mei-Yu, YAN Feng-Li** . Perfect Entanglement Teleportation via Two Parallel W State Channels[J]. Chin. Phys. Lett., 2011, 28(6): 1147-1150
[10] SHI Run-Hua, **, HUANG Liu-Sheng, YANG Wei, ZHONG Hong . A Novel Multiparty Quantum Secret Sharing Scheme of Secure Direct Communication Based on Bell States and Bell Measurements[J]. Chin. Phys. Lett., 2011, 28(5): 1147-1150
[11] SU Xiao-Qiang** . Entanglement Enhancement in an XY Spin Chain[J]. Chin. Phys. Lett., 2011, 28(5): 1147-1150
[12] LI Hong-Rong**, LI Fu-Li, ZHU Shi-Yao . Quantum Nonlocally Correlated Observables for Non-Gaussian States[J]. Chin. Phys. Lett., 2011, 28(5): 1147-1150
[13] HAN Jia-Jia, SUN Shi-Hai, LIANG Lin-Mei** . A Three-Node QKD Network Based on a Two-Way QKD System[J]. Chin. Phys. Lett., 2011, 28(4): 1147-1150
[14] WANG Tie-Jun, , LI Tao, DU Fang-Fang, DENG Fu-Guo** . High-Capacity Quantum Secure Direct Communication Based on Quantum Hyperdense Coding with Hyperentanglement[J]. Chin. Phys. Lett., 2011, 28(4): 1147-1150
[15] LIN Song, **, GAO Fei, LIU Xiao-Fen, . Quantum Secure Direct Communication with Five-Qubit Entangled State[J]. Chin. Phys. Lett., 2011, 28(3): 1147-1150
Viewed
Full text


Abstract