Chin. Phys. Lett.  2007, Vol. 24 Issue (5): 1144-1146    DOI:
Original Articles |
Probabilistic Controlled Teleportation of a Triplet W State
JIANG Wei-Xing;FANG Jian-Xing;ZHU Shi-Qun;SHA Jin-Qiao
Department of Physics, Suzhou University, Suzhou 215006
Cite this article:   
JIANG Wei-Xing, FANG Jian-Xing, ZHU Shi-Qun et al  2007 Chin. Phys. Lett. 24 1144-1146
Download: PDF(212KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A scheme for probabilistic controlled teleportation of a triplet W
state from the sender Alice to the distant receiver Bob is proposed.
In this scheme, an m-qubit GHZ state serves as the control parameter.
The m control qubits are shared by m(s1,s2... sm) spatially-separated supervisors. With the aid of local operations and individual measurements, including Bell-state measurement, Von Neumann measurement, and mutual classical communication, etc., Bob can faithfully reconstruct the original state by performing relevant unitary transformations. However, even if one participant does not cooperate during the process, the receiver Bob cannot fully recover the original state. This protocol can be extended to probabilistic controlled teleportation of an arbitrary N-qubit state and some other N-qubit entangled states.
Keywords: 03.67.-a      03.67.Hk      03.65.Ud     
Received: 25 January 2007      Published: 23 April 2007
PACS:  03.67.-a (Quantum information)  
  03.67.Hk (Quantum communication)  
  03.65.Ud (Entanglement and quantum nonlocality)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I5/01144
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
JIANG Wei-Xing
FANG Jian-Xing
ZHU Shi-Qun
SHA Jin-Qiao
[1] Bennett C H et al 1993 Phys. Rev. Lett. 70 1895
[2] Bouwmeester D et al 1997 Nature 390 575
[3] Furusawa A et al 1998 Science 282 706
[4] Boschi D et al 1998 Phys. Rev. Lett. 80 1121
[5] Lombard E et al 2002 Phys. Rev. Lett. 88 070402
[6] Fang J X et al 2003 Phys. Rev. A 67 014305
[7] Fang J X et al 2003 Commun. Theor. Phys. 40 519
[8] Dai H Y et al 2004 Opt. Commun. 231 281
[9] Xi Y J et al 2005 Commun. Theor. Phys. 44 51
[10]Yan F L and Ding H W 2006 Chin. Phys. Lett. 23 17
[11]Zhang Z J 2005 quant-ph/0504126
[12]Cao Z L et al 2005 Physica A 347 177
[13]Cola M M and Paris M G A 2005 Phys. Lett. A 337 10
[14]Karlsson A and Bourennane M 1998 Phys. Rev. A 58 4394
[15]Hillery M et al 1999 Phys. Rev. A 59 1829
[16]Zhang Z J 2006 Phys. Lett. A 352 55
[17]Zhang Z J and Man Z X 2005 Phys. Lett. A 341 55
[18]Yang C P et al 2004 Phys Rev. A. 70 022329
[19]Deng F G et al 2005 quant-ph/0501129
[20]Bennett C H 1992 Phys. Rev. Lett. 68 3121
[21]Deng F G and Long G L 2003 Phys. Rev. A 68 042315
[22]Deng F G and Long G L 2003 Phys. Rev. A 68 042317
[23]Man Z X et al 2005 Chin. Phys. Lett. 22 18
[24]Gao T et al 2005 Chin. Phys. Lett. 22 2473
Related articles from Frontiers Journals
[1] 天琦 窦,吉鹏 王,振华 李,文秀 屈,舜禹 杨,钟齐 孙,芬 周,雁鑫 韩,雨晴 黄,海强 马. A Fully Symmetrical Quantum Key Distribution System Capable of Preparing and Measuring Quantum States*

Supported by the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02), and the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (Grant No. IPO2019ZT06).

[J]. Chin. Phys. Lett., 2020, 37(11): 1144-1146
[2] GUO Yu, LUO Xiao-Bing. Quantum Teleportation between Two Distant Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2012, 29(6): 1144-1146
[3] LIU Kui, CUI Shu-Zhen, YANG Rong-Guo, ZHANG Jun-Xiang, GAO Jiang-Rui. Experimental Generation of Multimode Squeezing in an Optical Parametric Amplifier[J]. Chin. Phys. Lett., 2012, 29(6): 1144-1146
[4] REN Jie, WU Yin-Zhong, ZHU Shi-Qun. Quantum Discord and Entanglement in Heisenberg XXZ Spin Chain after Quenches[J]. Chin. Phys. Lett., 2012, 29(6): 1144-1146
[5] Chang Ho Hong,Jin O Heo,Jong in Lim,Hyung jin Yang,**. A Quantum Network System of QSS-QDC Using χ-Type Entangled States[J]. Chin. Phys. Lett., 2012, 29(5): 1144-1146
[6] XIANG Shao-Hua**,DENG Xiao-Peng,SONG Ke-Hui. Protection of Two-Qubit Entanglement by the Quantum Erasing Effect[J]. Chin. Phys. Lett., 2012, 29(5): 1144-1146
[7] SHAN Chuan-Jia,**,CAO Shuai,XUE Zheng-Yuan,ZHU Shi-Liang. Anomalous Temperature Effects of the Entanglement of Two Coupled Qubits in Independent Environments[J]. Chin. Phys. Lett., 2012, 29(4): 1144-1146
[8] QIAN Yi,XU Jing-Bo**. Enhancing Quantum Discord in Cavity QED by Applying Classical Driving Field[J]. Chin. Phys. Lett., 2012, 29(4): 1144-1146
[9] LI Hong-Rong**,ZHANG Pei,GAO Hong,BI Wen-Ting,ALAMRI M. D.,LI Fu-Li. Non-Equilibrium Quantum Entanglement in Biological Systems[J]. Chin. Phys. Lett., 2012, 29(4): 1144-1146
[10] Arpita Maitra, Santanu Sarkar. On Universality of Quantum Fourier Transform[J]. Chin. Phys. Lett., 2012, 29(3): 1144-1146
[11] QIN Meng, ZHAI Xiao-Yue, CHEN Xuan, LI Yan-Biao, WANG Xiao, BAI Zhong. Effect of Spin-Orbit Interaction and Input State on Quantum Discord and Teleportation of Two-Qubit Heisenberg Systems[J]. Chin. Phys. Lett., 2012, 29(3): 1144-1146
[12] GE Rong-Chun, LI Chuan-Feng, GUO Guang-Can. Spin Dynamics in the XY Model[J]. Chin. Phys. Lett., 2012, 29(3): 1144-1146
[13] M. Ramzan. Decoherence and Multipartite Entanglement of Non-Inertial Observers[J]. Chin. Phys. Lett., 2012, 29(2): 1144-1146
[14] Piotr Zawadzki**. New View of Ping-Pong Protocol Security[J]. Chin. Phys. Lett., 2012, 29(1): 1144-1146
[15] GU Shi-Jian**, WANG Li-Gang, WANG Zhi-Guo, LIN Hai-Qing. Repeater-Assisted Zeno Effect in Classical Stochastic Processes[J]. Chin. Phys. Lett., 2012, 29(1): 1144-1146
Viewed
Full text


Abstract