Chin. Phys. Lett.  2007, Vol. 24 Issue (4): 863-866    DOI:
Original Articles |
Multiparty Quantum Secret Sharing of Quantum States with Quantum Registers
GUO Ying 1,2;ZENG Gui-Hua1;CHEN Zhi-Gang2
1Department of Electronic Engineering, Shanghai Jiaotong University, Shanghai 200030 2Department of Communication Engineering, Central South University,Changsha 410083
Cite this article:   
GUO Ying, ZENG Gui-Hua, CHEN Zhi-Gang 2007 Chin. Phys. Lett. 24 863-866
Download: PDF(320KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A quantum secret sharing scheme is proposed by making use of quantum registers. In the proposed scheme, secret message state is encoded into multipartite entangled states. Several identical multi-particle entanglement states are generated and each particle of the entanglement state is filled in different quantum registers which act as shares of the secret message. Two modes, i.e. the detecting mode and the message mode, are employed so that the eavesdropping can be detected easily and the secret message may be
recovered. The security analysis shows that the proposed scheme is secure against eavesdropping of eavesdropper and cheating of participants.
Keywords: 03.67.Dd      03.65.Ud     
Received: 04 January 2007      Published: 26 March 2007
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.65.Ud (Entanglement and quantum nonlocality)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I4/0863
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GUO Ying
ZENG Gui-Hua
CHEN Zhi-Gang
[1] Hillery M, Buzek V and Berthiaume A 1999 Phys. Rev. A 59 1829
[2] Karlsson A, Koashi M and Imoto N 1999 Phys. Rev. A 59 162
[3] Gottesman D 2000 Phys. Rev. A 61 042311
[4] Tittel W, Zbinden H and Gisin N 2001 Phys. Rev. A 63 042301
[5] Karimipour V and Bahraminasab A 2002 Phys. Rev. A 65042320
[6] Chau H F 2002 Phys. Rev. A 66 060302
[7] Bagherinezhad S and Karimipour V 2003 Phys. Rev. A 67044302
[8] Guo G P and Guo G C 2003 Phys. Lett. A 310 247
[9] Cleve R, Gottesman D and Lo H K 1999 Phys. Rev. Lett. 83 648
[10] Bandyopadhyay S 2000 Phys. Rev. A 62 012308
[11] Hsu L Y 2003 Phys. Rev. A 68 022306
[12] Lance A M, Symul T, Bowen W P, Sanders B C and Lam P K2004 Phys. Rev. Lett. 92 177903
[13] Pittman T B and Franson J D 2003 Phys. Rev. Lett. 90 240401
[14] Rohde P P, Pryde G J et al 2005 Phys. Rev. A 72 039906
[15] Waks E, Zeevi A and Yamamoto Y 2002 Phys. Rev. A 65 052310
Related articles from Frontiers Journals
[1] 天琦 窦,吉鹏 王,振华 李,文秀 屈,舜禹 杨,钟齐 孙,芬 周,雁鑫 韩,雨晴 黄,海强 马. A Fully Symmetrical Quantum Key Distribution System Capable of Preparing and Measuring Quantum States*

Supported by the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02), and the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (Grant No. IPO2019ZT06).

[J]. Chin. Phys. Lett., 2020, 37(11): 863-866
[2] REN Jie, WU Yin-Zhong, ZHU Shi-Qun. Quantum Discord and Entanglement in Heisenberg XXZ Spin Chain after Quenches[J]. Chin. Phys. Lett., 2012, 29(6): 863-866
[3] Chang Ho Hong,Jin O Heo,Jong in Lim,Hyung jin Yang,**. A Quantum Network System of QSS-QDC Using χ-Type Entangled States[J]. Chin. Phys. Lett., 2012, 29(5): 863-866
[4] SHAN Chuan-Jia,**,CAO Shuai,XUE Zheng-Yuan,ZHU Shi-Liang. Anomalous Temperature Effects of the Entanglement of Two Coupled Qubits in Independent Environments[J]. Chin. Phys. Lett., 2012, 29(4): 863-866
[5] LI Hong-Rong**,ZHANG Pei,GAO Hong,BI Wen-Ting,ALAMRI M. D.,LI Fu-Li. Non-Equilibrium Quantum Entanglement in Biological Systems[J]. Chin. Phys. Lett., 2012, 29(4): 863-866
[6] GE Rong-Chun, LI Chuan-Feng, GUO Guang-Can. Spin Dynamics in the XY Model[J]. Chin. Phys. Lett., 2012, 29(3): 863-866
[7] M. Ramzan. Decoherence and Multipartite Entanglement of Non-Inertial Observers[J]. Chin. Phys. Lett., 2012, 29(2): 863-866
[8] Piotr Zawadzki**. New View of Ping-Pong Protocol Security[J]. Chin. Phys. Lett., 2012, 29(1): 863-866
[9] LI Jun-Gang, **, ZOU Jian, **, XU Bao-Ming, SHAO Bin, . Quantum Correlation Generation in a Damped Cavity[J]. Chin. Phys. Lett., 2011, 28(9): 863-866
[10] ZHANG Ai-Ping**, QIANG Wen-Chao, LING Ya-Wen, XIN Hong, YANG Yong-Ming . Geometric Phase for a Qutrit-Qubit Mixed-Spin System[J]. Chin. Phys. Lett., 2011, 28(8): 863-866
[11] WANG Chuan, **, HAO Liang, ZHAO Lian-Jie . Implementation of Quantum Private Queries Using Nuclear Magnetic Resonance[J]. Chin. Phys. Lett., 2011, 28(8): 863-866
[12] ZHANG Peng**, LI Chao, . Feasibility of Double-Click Attack on a Passive Detection Quantum Key Distribution System[J]. Chin. Phys. Lett., 2011, 28(7): 863-866
[13] Abbass Sabour, Mojtaba Jafarpour** . A Probability Measure for Entanglement of Pure Two-Qubit Systems and a Useful Interpretation for Concurrence[J]. Chin. Phys. Lett., 2011, 28(7): 863-866
[14] YAN Hui, **, ZHU Shi-Liang, DU Sheng-Wang . Efficient Phase-Encoding Quantum Key Generation with Narrow-Band Single Photons[J]. Chin. Phys. Lett., 2011, 28(7): 863-866
[15] WANG Xiao-Bo, WANG Jing-Jing, HE Bo, XIAO Lian-Tuan**, JIA Suo-Tang . Photon Counting Optical Time Domain Reflectometry Applying a Single Photon Modulation Technique[J]. Chin. Phys. Lett., 2011, 28(7): 863-866
Viewed
Full text


Abstract