Chin. Phys. Lett.  2007, Vol. 24 Issue (4): 1042-1045    DOI:
Original Articles |
Electronic Transport in Molecular Junction Based on C20 Cages
OUYANG Fang-Ping; XU Hui
School of Physics Science and Technology, Central South University, Changsha 410083School of Material Science and Engineering, Central South University, Changsha 410083
Cite this article:   
OUYANG Fang-Ping, XU Hui 2007 Chin. Phys. Lett. 24 1042-1045
Download: PDF(660KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Choosing closed-ended armchair (5, 5) single-wall carbon nanotubes (CCNTs) as electrodes, we investigate the electron transport properties across an all-carbon molecular junction consisting of C20 molecules suspended between two semi-infinite carbon nanotubes. It is shown that the conductances are quite sensitive to the number of C20 molecules between electrodes for both configuration CF1 and double-bonded models: the conductances of C20 dimers are markedly smaller than those of monomers. The physics is that incident electrons easily pass the C20 molecules and are predominantly
scattered at the C20--C20 junctions. Moreover, we study the doping effect of such molecular junction by doping nitrogen atoms substitutionally. The bonding property of the molecular junction with configuration CF1 has been analysed by calculating the Mulliken atomic charges. Our results have revealed that the C atoms in N-doped junctions are more ionic than those in pure-carbon ones, leading to the fact that N-doped junctions have relatively large conductance.
Keywords: 72.10.-d      72.80.-r      85.65.+h     
Received: 21 November 2006      Published: 26 March 2007
PACS:  72.10.-d (Theory of electronic transport; scattering mechanisms)  
  72.80.-r (Conductivity of specific materials)  
  85.65.+h (Molecular electronic devices)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I4/01042
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
OUYANG Fang-Ping
XU Hui
[1] Aviram A and Ratner M A 1974 Chem. Phys. Lett. 29 277
[2] Joachim C, Gimzewski J K and Aviram A 2000 Nature 408541
[3] Smit R H M, Noat Y, Untiedt C, Lang N D, van Hemert M C and vanRuitenbeek J M 2002 Nature 419 906
[4] Montgomery M J, Hoekstra J, Todorov T N and Sutton A P 2003 J. Phys. Condens. Matter 15 731
[5] Chen Y C, Zwolak M and Ventra M Di 2003 Nano Lett. 3 1691
[6] Zeng D, Wang H, Wang B and Hou J G 2000 Appl.Phys. Lett. 77 3595
[7] Park H k, Park J, Lim K L, Anderson E H, Alivisatos A P and McEuenP L 2000 Nature 407 57
[8] Pasupathy A N,Park J, Chang C, Soldatov A V, Lebedkin S,Bialczak R C, GroseJ E, L A K Donev, Sethna J P, Ralph D C and McEuen PL 2005 Nano Lett. 5 203
[9] Zhao J, Zeng C, Cheng X, K Wang, Wang G, Yang J, Hou J G and Zhu Q2005 Phys. Rev. Lett. 95 045502
[10] Taylor J, Guo H and Wang J Phys. Rev. B 2001 63121104(R)
[11] Palacios J J, Per\'ez-Jim\'enez A J, Louis E and Verg\'es J A 2001 Nanotechnology 12 160
[12] Gutierrez R, Fagas G, Cuniberti G, Grossmann F, Schmidt R andRichter K 2002 Phys. Rev. B 65 113410
[13] Schrier J and Whaley K B 2006 J. Phys. Chem. A 110 5386
[14] Otani M, Ono T and Hirose K 2004 Phys. Rev. B 69121408(R)
[15] Yamamoto T, Watanabe K and Watanabe S 2005 Phys. Rev. Lett. 95 065501
[16] Prinzbach H, Andrey D, Mattias H and Nicolai S H 2000 Nature 407 60
[17] Miyamoto Y and Saito M 2001 Phys. Rev. B 63 161401(R)
[18] Roland C, Larade B, Taylor J and Guo H 2001 Phys. Rev. B 65 041401(R)
[19] Otani M, Ono T and Hirose K 2004 Phys. Rev. B 69121408(R)
[20] Yamamoto T, Watanabe K and Watanabe S 2005 Phys. Rev. Lett. 95 065501
[21] Dagata J A, Perez-Murano F, Martin C, Kuramochi H and Yokoyama H2004 J. Appl. Phys. 96 2386 Martinez J, Yuzvinsky T D, Fennimore A M, Zettl A, Garcia R andBustamante C 2005 Nanotechnology 16 2493
[22] Watanabe H, Manabe C, Shigematsu T and Shimizu M 2001 App.Phys. Lett. 78 2928 Huang J Y, Chen S, Jo S H, Wang Z, Han D X, Chen G, Dresselhaus M S andRen Z F 2005 Phys. Rev. Lett. 94 236802
[23] Paulson S, Helser A, Nardelli M B, Taylor R M, Falvo M,Superfine R and Washburn S 2000 Science 290 1742
[24] Rueckes T, Kim K, Joselevich E, Tseng G Y, Cheung C L and LieberC M 2000 Science 289 94 Postma H W C, Teepen T, Yao Z, Grifoni M and Dekke C 2001 Science 293 76
[25] Yan Q M, Wu J, Duan W H and Gu B L 2005 Phys. Rev. B 72 155425
[26] Yan Q , Zhou G, Hao S G, Wu J and Duan W H 2006 Appl. Phys.Lett. 88 173107
[27] Ordejon P, Artacho E and Soler J M 1996 Phys. Rev. B 53R10441 Soler J M, Slava V R and Umberto R 2002 J. Phys.: Condens.Matter 14 2745
[28] Wang G W, Komatsu K, Murata Y and Shiro M 1997 Nature 387 583
Related articles from Frontiers Journals
[1] ZHAO Peng**,LIU De-Sheng,. Electronic Transport Properties of an Anthraquinone-Based Molecular Switch with Carbon Nanotube Electrodes[J]. Chin. Phys. Lett., 2012, 29(4): 1042-1045
[2] XIA Cai-Juan**, LIU De-Sheng, ZHANG Ying-Tang . Electronic Transport Properties of a Naphthopyran-Based Optical Molecular Switch: an ab initio Study[J]. Chin. Phys. Lett., 2011, 28(9): 1042-1045
[3] M. R. Setare, *, D. Jahani, ** . Quantum Hall Effect and Different Zero-Energy Modes of Graphene[J]. Chin. Phys. Lett., 2011, 28(9): 1042-1045
[4] JIA Zhi-Chun, HU Zhen-Peng, ZHAO Ai-Di, LI Zhen-Yu, LI Bin** . Scanning Tunneling Spectroscopy of Metal Phthalocyanines on a Au(111) Surface with a Ni Tip[J]. Chin. Phys. Lett., 2011, 28(7): 1042-1045
[5] SHI Feng, , ZHANG Yi-Jun, CHENG Hong-Chang, ZHAO Jing, XIONG Ya-Juan, CHANG Ben-Kang** . Theoretical Revision and Experimental Comparison of Quantum Yield for Transmission-Mode GaAlAs/GaAs Photocathodes[J]. Chin. Phys. Lett., 2011, 28(4): 1042-1045
[6] ZHAO Peng**, LIU De-Sheng, ZHANG Ying, WANG Pei-Ji, ZHANG Zhong . Rectifying Properties of a Nitrogen/Boron-Doped Capped-Carbon-Nanotube-Based Molecular Junction[J]. Chin. Phys. Lett., 2011, 28(4): 1042-1045
[7] WANG Jing, LIANG Yun-Ye, CHEN Hao, WANG Peng, R. Note, H. Mizuseki, Y. Kawazoe. Self-Consistent Study of Conjugated Aromatic Molecular Transistors[J]. Chin. Phys. Lett., 2010, 27(6): 1042-1045
[8] KONG Xiao-Lan, XIONG Yong-Jian. Resonance Transport of Graphene Nanoribbon T-Shaped Junctions[J]. Chin. Phys. Lett., 2010, 27(4): 1042-1045
[9] SU Wen-Yong, LUO Yi. Weak Gate Effect in 1,3-Benzenedithiol Molecular Device[J]. Chin. Phys. Lett., 2010, 27(4): 1042-1045
[10] ZHAO Peng, ZHANG Zhong, WANG Pei-Ji, ZHANG Hai-Kui, REN Miao-Juan, LI Feng. Effects of End Termination on Electronic Transport in a Molecular Switch[J]. Chin. Phys. Lett., 2010, 27(2): 1042-1045
[11] LU Xiao-Hong, SUN Jiu-Xun, GUO Yang, ZHANG Da. Potential-Dependent Generalized Einstein Relation in Disordered Organic Semiconductors[J]. Chin. Phys. Lett., 2009, 26(8): 1042-1045
[12] TIAN Guang-Jun, SU Wen-Yong. Two Possible Configurations for Silver-C60-Silver Molecular Devices and Their Conductance Characteristics[J]. Chin. Phys. Lett., 2009, 26(6): 1042-1045
[13] CHEN Yuan-Sha, CHEN Li-Ping, LIAN Gui-Jun, XIONG Guang-Cheng. Resistance Switching Characteristic and Charge Carrier Self-Trapping in Epitaxial Pr0.7(Ca1-xSrx)0.3MnO3 Thin Films[J]. Chin. Phys. Lett., 2009, 26(3): 1042-1045
[14] YUAN Ze, CHEN Zhi-Dong, ZHANG Jin-Yu, HE Yu, ZHANG Ming, YU Zhi-Ping. Derivative of Electron Density in Non-Equilibrium Green's Function Technique and Its Application to Boost Performance of Convergence[J]. Chin. Phys. Lett., 2009, 26(11): 1042-1045
[15] NIU Jun, YANG Zhi, CHANG Ben-Kang. Equivalent Method of Solving Quantum Efficiency of Reflection-Mode Exponential Doping GaAs Photocathode[J]. Chin. Phys. Lett., 2009, 26(10): 1042-1045
Viewed
Full text


Abstract