Chin. Phys. Lett.  2007, Vol. 24 Issue (4): 1021-1024    DOI:
Original Articles |
Large Slip Length over a Nanopatterned Surface
LI Ding 1,2;DI Qin-Feng 3;LI Jing-Yuan 4;QIAN Yue-Hong 3;FANG Hai-Ping 1
1Shanghai Institute of Applied Physics, Chinese Academy of Sciences, PO Box 800-204, Shanghai 2018002Graduate School of the Chinese Academy of Sciences, Beijing 1000803Shanghai Institute of Applied Mathematics and Mechanics, ShanghaiUniversity, Shanghai 200074Department of Physics, Zhejiang University, Hangzhou 310027
Cite this article:   
LI Ding, DI Qin-Feng, LI Jing-Yuan et al  2007 Chin. Phys. Lett. 24 1021-1024
Download: PDF(258KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A thermodynamic method is employed to analyse the slip length of hydrophobic nanopatterned surface. The maximal slip lengths with respect to the hydrophobicity of the nanopatterned surface are computed. It is found that the slip length reaches more than 50mum if the nanopatterned surfaces have a contact angle larger than 160°. Such results are expected to find extensive applications in micro-channels and helpful to understand recent
experimental observations of the slippage of nanopatterned surfaces.
Keywords: 68.08.-p      83.50.Lh      68.03.Cd     
Received: 18 September 2006      Published: 26 March 2007
PACS:  68.08.-p (Liquid-solid interfaces)  
  83.50.Lh (Slip boundary effects (interfacial and free surface flows))  
  68.03.Cd (Surface tension and related phenomena)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I4/01021
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Ding
DI Qin-Feng
LI Jing-Yuan
QIAN Yue-Hong
FANG Hai-Ping
[1] Landau L D and Lifshitz E M 1984 Fluid Mechanics 2nd edn ( Course of Theoretical Physics vol6 (Oxford: Pergamon)
[2] Squires T M and Quake S R 2005 Rev. Mod. Phys. 77 977
[3] Reyes D R, Iossifidis D, Auroux P A and Manz A 2002 Anal.Chem. 74 2623
[4] Whitesides G M 2006 Nature 442 368
[5] Holt J K, Park H G, Wang Y, Stadermann M, Artyukhin A B,Grigoropoulos C P, Noy A and Bakajin O 2006 Science 312 1034
[6] Choi C H and Kim C J 2006 Phys. Rev. Lett. 96 066001
[7] Cottin-Bizonne C, Barrat J L, Bocquet L and Charlaix E 2003 Nat. Mater. 2 237
[8] Huang X, Margulis C J and Bernes B J 2003 Proceedings ofthe National Academy of Sciences of USA 100 11953
[9] Joanny J F and de Gennes P G 1984 J. Chem. Phys. 81 552
[10] Guo H and Fang H 2005 Chin. Phys. Lett. 22 787
[11] De Gennes P G 2002 Langmuir 18 3413
[12] Vinogradova O I 1995 Langmuir 11 2213
[13] Voronov R S, Papavassiliou D V and Lee L L 2006 J. Chem. Phys. 124 204701
[14] Rowlinson J S and Widom B 1989 Molecular Theory ofCapillarity (Oxford: Oxford University Press)
[15] Barrat J L and Bocquet L 1999 Faraday Discuss. 112 119
Related articles from Frontiers Journals
[1] YU Yang, WU Qun, WANG Xue-Wei, YANG Xiao-Bin. Wetting Behavior between Droplets and Dust[J]. Chin. Phys. Lett., 2012, 29(2): 1021-1024
[2] GU Fang, ZHANG Jia-Hong**, XU Lin-Hua, LIU Qing-Quan, LI Min . Influence of Surface Effects on the Elastic Properties of Silicon Nanowires with Different Cross Sections[J]. Chin. Phys. Lett., 2011, 28(10): 1021-1024
[3] SHEN Chang-Le, XIE Wen-Jun, WEI Bing-Bo. Non-Axisymmetric Oscillation of Acoustically Levitated Water Drops at Specific Frequencies[J]. Chin. Phys. Lett., 2010, 27(7): 1021-1024
[4] MEI Mao-Fei, YU Bo-Ming, LUO Liang, CAI Jian-Chao. A Model for the Contact Angle of Liquid Droplets on Rough Surfaces[J]. Chin. Phys. Lett., 2010, 27(7): 1021-1024
[5] HONG Zhen-Yu, XIE Wen-Jun, WEI Bing-Bo. Ultrasonic Vibration Suspends Large Pendant Drops[J]. Chin. Phys. Lett., 2009, 26(5): 1021-1024
[6] WANG Le-Feng, RONG Wei-Bin, SUN Li-Ning, CHEN Li-Guo, SHAO Bing. Capillary Forces between Submillimeter Spheres and Flat Surfaces at Constant Liquid Volumes[J]. Chin. Phys. Lett., 2009, 26(12): 1021-1024
[7] LIU Jian-Lin. Analogies between a Meniscus and a Cantilever[J]. Chin. Phys. Lett., 2009, 26(11): 1021-1024
[8] SUN Li-Ning, WANG Le-Feng, RONG Wei-Bin. Capillary Interactions between a Probe Tip and a Nanoparticle[J]. Chin. Phys. Lett., 2008, 25(5): 1021-1024
[9] CHEN Yan-Yan, , YI Hou-Hui, LI Hua-Bing,. Boundary Slip and Surface Interaction: A Lattice Boltzmann Simulation[J]. Chin. Phys. Lett., 2008, 25(1): 1021-1024
[10] LIU Jian-Lin, FENG Xi-Qiao. Capillary Adhesion of Microbeams: Finite Deformation Analysis[J]. Chin. Phys. Lett., 2007, 24(8): 1021-1024
[11] YE Xi, CHENG Yang, HUANG Xue-Dong, MA Hong-Ru. Relationship between Spreading Rate and Wetting Behaviour of Oil on Surface of Surfactant Solution[J]. Chin. Phys. Lett., 2007, 24(8): 1021-1024
[12] LI Zhao-Xia, ZHANG Li-Juan, YI Hou-Hui, FANG Hai-Ping. Theoretical Study on the Capillary Force between an Atomic Force Microscope Tip and a Nanoparticle[J]. Chin. Phys. Lett., 2007, 24(8): 1021-1024
[13] WANG Hai-Peng, CHANG Jian, LUO Bing-Chi, WEI Bing-Bo. Determination of the Surface Tension of Liquid Fe 77.5 Cu13Mo 9.5 Ternary Monotectic Alloy[J]. Chin. Phys. Lett., 2007, 24(2): 1021-1024
[14] LIU Jian-Lin, XIA Re, LI Bing-Wei, FENG Xi-Qiao. Directional Motion of Droplets in a Conical Tube or on a Conical Fibre[J]. Chin. Phys. Lett., 2007, 24(11): 1021-1024
[15] WU Di, WANG Yi-Zhen, ZHANG Jin-Xiu. Non-Contact to Contact Transition: Direct Measurements of Interaction Forces between a Solid Probe and a Planar Air--Water Interface[J]. Chin. Phys. Lett., 2007, 24(10): 1021-1024
Viewed
Full text


Abstract