Chin. Phys. Lett.  2007, Vol. 24 Issue (3): 713-716    DOI:
Original Articles |
Influence of Feedback Levels on Polarized Optical Feedback Characteristics in Zeeman-Birefringence Dual Frequency Lasers
MAO Wei;ZHANG Shu-Lian;ZHOU Lu-Fei;LIU Xiao-Yan;WANG Ming-Ming
The State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084
Cite this article:   
MAO Wei, ZHANG Shu-Lian, ZHOU Lu-Fei et al  2007 Chin. Phys. Lett. 24 713-716
Download: PDF(325KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The influence of feedback levels on the intensity and polarization properties of polarized optical feedback in a Zeeman-birefringence dual frequency laser is systematically investigated. By changing the feedback power ratio, different feedback levels are obtained. Three distinct regimes of polarized optical feedback effects are found and defined as regimes I, II and III. The feedback level boundaries among the regimes are acquired experimentally. The theoretical analysis is presented to be in good agreement with the experimental results.
Keywords: 42.55.Lt      42.60.Jf      42.25.Hz      06.30.Bp     
Received: 28 June 2006      Published: 08 February 2007
PACS:  42.55.Lt (Gas lasers including excimer and metal-vapor lasers)  
  42.60.Jf (Beam characteristics: profile, intensity, and power; spatial pattern formation)  
  42.25.Hz (Interference)  
  06.30.Bp (Spatial dimensions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I3/0713
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
MAO Wei
ZHANG Shu-Lian
ZHOU Lu-Fei
LIU Xiao-Yan
WANG Ming-Ming
[1] King P G R and Steward G J 1963 New Sci. 17 180
[2] Lang R and Kobayashi K 1980 IEEE J. Quantum Electron. 16 347
[3] Wang W M, Grattan K T V, Palmer A W and Boyle W J O 1994 J.Lightwave Technol. 12 1577
[4] Servagent N, Bosch T and Lescure M 1977 IEEE Trans. Instrum.Meas. 46 847
[5] Shinohara S, Mochizuki A, Yoshida H and Sumi M 1986 Appl.Opt. 25 1417
[6] Bearden A, ONeill M P, Osborne L C and Wong T L 1993 Opt.Lett. 18 238
[7] Fei L G, Li Y and Zong X B 2005 Opt. Commun. 249 255
[8] Yu Y G, Giuliani G and Donati S 2004 IEEE Photonics Technol.Lett. 16 990
[9] Zhang S L, Guo H, Li K L and Han Y M 1995 Opt. Lasers Eng. 23 1
[10] Mao W, Zhang S L, Zhang L Q, Zhu J and Li Y 2006 Chin. Phys.Lett. 23 1188
[11] Mao W and Zhang S L 2006 Chin. Phys. 15 340
[12] Liu G, Zhang S L, Li L, Zhu J and Li Y 2004 Opt.Commun. 231 349
[13] Fei L G, Zhang S L and Wan X J 2004 Chin. Phys. Lett. 21 1944
[14] Mao W, Zhang S L, Cui L and Tan Y D 2006 Opt. Exp. 14182
[15] Mao W and Zhang S L 2006 Appl. Opt. 45 7723
[16] Zong X B, Liu W X and Zhang S L 2005 Chin. Phys. Lett. 22 1906
[17] Wan X J, Zhang S L, Liu G and Fei L G 2004 Chin. Phys. Lett. 21 2175
Related articles from Frontiers Journals
[1] MIAO Liang**,ZUO Du-Luo,CHENG Zu-Hai. A Terahertz Wavemeter Based on a Fabry–Perot Interferometer Composed of Two Identical Ge Etalons[J]. Chin. Phys. Lett., 2012, 29(5): 713-716
[2] REN Cheng**,YANG Xing-Tuan,ZHANG Shu-Lian. Absolute Angular Displacement Determination Based on Laser-Frequency Splitting Technology[J]. Chin. Phys. Lett., 2012, 29(5): 713-716
[3] SU Zhou-Ping**,JI Zhi-Cheng,ZHU Zhuo-Wei,QUE Li-Zhi,ZHU Yun. Phase Locking of Laser Diode Array by Using an Off-Axis External Talbot Cavity[J]. Chin. Phys. Lett., 2012, 29(5): 713-716
[4] LI Guo-Fu,**,YU Hai-Jun,DUO Li-Ping,JIN Yu-Qi,WANG Jian,SANG Feng-Ting,WANG De-Zhen. Pulsed Chemical Oxygen Iodine Lasers Excited by Pulse Gas Discharge with the Assistance of Surface Sliding Discharge Pre-ionization[J]. Chin. Phys. Lett., 2012, 29(5): 713-716
[5] SHEN Ying-Jie, YAO Bao-Quan, DAI Tong-Yu, LI-Gang, DUAN Xiao-Ming, JU You-Lun, WANG Yue-Zhu. Performance of a c− and a-Cut Ho:YAP Laser at Room Temperature[J]. Chin. Phys. Lett., 2012, 29(3): 713-716
[6] LIANG Shi-Xiong, WU Zhao-Xin, ZHAO Xuan-Ke, HOU Xun. Escaped and Trapped Emission of Organic Light-Emitting Diodes[J]. Chin. Phys. Lett., 2012, 29(2): 713-716
[7] CAO Bin**, ZHANG Chun-Xi, OU Pan, LIN Zhi-Li, SUN Ming-Jie. Two-Detector Arbitrary Nth-Order HBT-Type Ghost Diffraction[J]. Chin. Phys. Lett., 2012, 29(1): 713-716
[8] ZHOU Kang**, XU Chen, XIE Yi-Yang, ZHAO Zhen-Bo, LIU Fa, SHEN Guang-Di . Reduction of the Far-Field Divergence Angle of an 850nm Multi-Leaf Holey Vertical Cavity Surface Emitting Laser[J]. Chin. Phys. Lett., 2011, 28(8): 713-716
[9] ZHUANG Wei, CHEN Jing-Biao** . Feasibility of Extreme Ultraviolet Active Optical Clock[J]. Chin. Phys. Lett., 2011, 28(8): 713-716
[10] RAO Zhi-Ming, WANG Xin-Bing**, LU Yan-Zhao, ZUO Du-Luo, WU Tao . Two Schemes for Generating Efficient Terahertz Waves in Nonlinear Optical Crystals with a Mid-Infrared CO2 Laser[J]. Chin. Phys. Lett., 2011, 28(7): 713-716
[11] ZHAO Yan-Zhong**, SUN Hua-Yan, ZHENG Yong-Hui . An Approximate Analytical Propagation Formula for Gaussian Beams through a Cat-Eye Optical Lens under Large Incidence Angle Condition[J]. Chin. Phys. Lett., 2011, 28(7): 713-716
[12] ZHANG Zheng, PAN Di, YU Yu**, ZHANG Xin-Liang . All-Optical Format Conversion from RZ-DPSK to NRZ-DPSK at 40Gbit/s[J]. Chin. Phys. Lett., 2011, 28(5): 713-716
[13] HU Xiao-Gen**, LI Yu-He**, LIN Hao-Shan, WANG Dong-Sheng, QI Xin . Second Harmonic Generation in Scanning Probe Microscopy for Edge Localization[J]. Chin. Phys. Lett., 2011, 28(4): 713-716
[14] SHA Peng-Fei, XIN Jian-Guo**, FANG Li-Ping, LIU Zheng-Fan, ZHOU Ying, YU Song-Lin, WEN Jian-Guo . Coupling Frequency Band of the In-Phase Locked Gain Waveguide Array Lasers[J]. Chin. Phys. Lett., 2011, 28(4): 713-716
[15] LU Yan-Zhao, WANG Xin-Bing**, MIAO Liang, ZUO Du-Luo, CHENG Zu-Hai . Terahertz Generation in Nonlinear Crystals with Mid-Infrared CO2 Laser[J]. Chin. Phys. Lett., 2011, 28(3): 713-716
Viewed
Full text


Abstract