Chin. Phys. Lett.  2007, Vol. 24 Issue (3): 606-608    DOI:
Original Articles |
Remote State Preparation with Genuine Multipartite Entanglement
MA Yi-Cong;ZHANG Yong-Sheng;GUO Guang-Can
Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026
Cite this article:   
MA Yi-Cong, ZHANG Yong-Sheng, GUO Guang-Can 2007 Chin. Phys. Lett. 24 606-608
Download: PDF(193KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Enlightened by the work of Yeo and Chua [Phys. Rev. Lett. 96(2006)060502] for teleportation and dense coding with genuine multipartite entanglement, we present an explicit protocol for faithful remote state preparation in a real coefficient case by using the same four-particle entangled state which is not reducible to pair of Bell states. It is shown that any complex coefficient case can be changed to a real coefficient case. With this protocol, the state can play an analogous role to Einstein--Podolsky--Rosen pairs in the theory of multipartite entanglement.
Keywords: 03.67.Hk      03.65.Ud     
Received: 18 September 2006      Published: 08 February 2007
PACS:  03.67.Hk (Quantum communication)  
  03.65.Ud (Entanglement and quantum nonlocality)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I3/0606
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
MA Yi-Cong
ZHANG Yong-Sheng
GUO Guang-Can
[1] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A andWootters W K 1993 Phys. Rev. Lett. 70 1895
[2]]Einstein A, Podolsky B and Rosen N 1935 Phys.Rev. 47 777 Bohm D 1951 Quantum Theory (Englewood Cliffs, NJ: Prentice-Hall)
[3] Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter Hand Zeilinger A 1997 Nature 390 575
[4] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[5] Pati A K 2001 Phys. Rev. A 63 014302
[6] Lo H K 2000 Phys. Rev. A 62 012313
[7] Bennett C H, DiVincenzo D P, Shor P W, Smolin J A,Terhal B M and Wootters W K 2001 Phys. Rev. Lett. 87 077902
[8]Devetak I and Berger T 2001 Phys. Rev. Lett. 87 197901
[9]Ye M Y, Zhang Y S and Guo G C 2004 Phys. Rev. A 69 022310
[10] Yeo Y and Chua W K 2006 Phys. Rev. Lett. 96 060502
[11] D\"{ur W, Cirac J I and Tarrach R 2000 Phys.Rev. A 61 042314
[12] Briegel H J and Raussendorf R 2001 Phys. Rev. Lett. 86 910
Related articles from Frontiers Journals
[1] 天琦 窦,吉鹏 王,振华 李,文秀 屈,舜禹 杨,钟齐 孙,芬 周,雁鑫 韩,雨晴 黄,海强 马. A Fully Symmetrical Quantum Key Distribution System Capable of Preparing and Measuring Quantum States*

Supported by the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02), and the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (Grant No. IPO2019ZT06).

[J]. Chin. Phys. Lett., 2020, 37(11): 606-608
[2] GUO Yu, LUO Xiao-Bing. Quantum Teleportation between Two Distant Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2012, 29(6): 606-608
[3] REN Jie, WU Yin-Zhong, ZHU Shi-Qun. Quantum Discord and Entanglement in Heisenberg XXZ Spin Chain after Quenches[J]. Chin. Phys. Lett., 2012, 29(6): 606-608
[4] Chang Ho Hong,Jin O Heo,Jong in Lim,Hyung jin Yang,**. A Quantum Network System of QSS-QDC Using χ-Type Entangled States[J]. Chin. Phys. Lett., 2012, 29(5): 606-608
[5] SHAN Chuan-Jia,**,CAO Shuai,XUE Zheng-Yuan,ZHU Shi-Liang. Anomalous Temperature Effects of the Entanglement of Two Coupled Qubits in Independent Environments[J]. Chin. Phys. Lett., 2012, 29(4): 606-608
[6] LI Hong-Rong**,ZHANG Pei,GAO Hong,BI Wen-Ting,ALAMRI M. D.,LI Fu-Li. Non-Equilibrium Quantum Entanglement in Biological Systems[J]. Chin. Phys. Lett., 2012, 29(4): 606-608
[7] GE Rong-Chun, LI Chuan-Feng, GUO Guang-Can. Spin Dynamics in the XY Model[J]. Chin. Phys. Lett., 2012, 29(3): 606-608
[8] M. Ramzan. Decoherence and Multipartite Entanglement of Non-Inertial Observers[J]. Chin. Phys. Lett., 2012, 29(2): 606-608
[9] Piotr Zawadzki**. New View of Ping-Pong Protocol Security[J]. Chin. Phys. Lett., 2012, 29(1): 606-608
[10] LI Jun-Gang, **, ZOU Jian, **, XU Bao-Ming, SHAO Bin, . Quantum Correlation Generation in a Damped Cavity[J]. Chin. Phys. Lett., 2011, 28(9): 606-608
[11] ZHANG Ai-Ping**, QIANG Wen-Chao, LING Ya-Wen, XIN Hong, YANG Yong-Ming . Geometric Phase for a Qutrit-Qubit Mixed-Spin System[J]. Chin. Phys. Lett., 2011, 28(8): 606-608
[12] YAN Hui, **, ZHU Shi-Liang, DU Sheng-Wang . Efficient Phase-Encoding Quantum Key Generation with Narrow-Band Single Photons[J]. Chin. Phys. Lett., 2011, 28(7): 606-608
[13] WANG Xiao-Bo, WANG Jing-Jing, HE Bo, XIAO Lian-Tuan**, JIA Suo-Tang . Photon Counting Optical Time Domain Reflectometry Applying a Single Photon Modulation Technique[J]. Chin. Phys. Lett., 2011, 28(7): 606-608
[14] QIAN Yi, XU Jing-Bo** . Quantum Discord Dynamics of Two Atoms Interacting with Two Quantized Field Modes through a Raman Interaction with Phase Decoherence[J]. Chin. Phys. Lett., 2011, 28(7): 606-608
[15] Abbass Sabour, Mojtaba Jafarpour** . A Probability Measure for Entanglement of Pure Two-Qubit Systems and a Useful Interpretation for Concurrence[J]. Chin. Phys. Lett., 2011, 28(7): 606-608
Viewed
Full text


Abstract