Chin. Phys. Lett.  2007, Vol. 24 Issue (2): 440-441    DOI:
Original Articles |
Laser Performance of Nd:GGG Operating at 938nm
ZHANG Chun-Yu 1,2;GAO Chun-Qing1;ZHANG Ling2;WEI Zhi-Yi2;ZHANG Zhi-Guo2
1Department of Opto-Electronics, Beijing Institute of Technology, Beijing 100081 2Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080
Cite this article:   
ZHANG Chun-Yu, GAO Chun-Qing, ZHANG Ling et al  2007 Chin. Phys. Lett. 24 440-441
Download: PDF(181KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report an efficient diode-pumped Nd-doped Gadolinium gallium garnet
(GGG) continuous-wave (CW) laser operating at 938nm. Laser action of
1.6at.% Nd-doped GGG crystals with different lengths and temperatures
are also investigated. The maximum output power of 620mW is obtained
at the incident pump power of 5.0W with a slope efficiency of 15%.
Keywords: 42.60.Jf      42.55.Xi      42.55.Rz     
Received: 27 September 2006      Published: 24 February 2007
PACS:  42.60.Jf (Beam characteristics: profile, intensity, and power; spatial pattern formation)  
  42.55.Xi (Diode-pumped lasers)  
  42.55.Rz (Doped-insulator lasers and other solid state lasers)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I2/0440
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Chun-Yu
GAO Chun-Qing
ZHANG Ling
WEI Zhi-Yi
ZHANG Zhi-Guo
[1] Brandle C D and Valentino A J 1972 J. Cryst. Growth 123
[2] Brandle C D 1978 J. Appl. Phys. 49 1855
[3] Bruni F J 1978 Crystals, Growth, Properties, andApplications ed Rooijmans C J Mt (Berlin: Springer) vol 1 p 53
[4] Raether R G and Prochnow E R 1985 Appl. Opt. 243420
[5] Zhao G J, Li T and Xu J 2002 J. Crystal Growth 720237
[6] Keszei B, Paitz J, Vandlik J and Suveges A 2001 J. CrystalGrowth 226 95
[7] Koechner W 2002 Solid-State Laser Engineering (Berlin:Springer)
[8] Hayakawa H et al , Maeda K, Ishikawa T, Yokoyama T et al1987 Jpn. J. App1. Phys. 26 L623
[9] Zhao Z W et al, Jiang B X, Zhang Y H, Liu Y P, Xu X D, Song P X, Wang X D and Xu J2005 Chin. Opt. Lett. 3 163
[10] Bonner C L et al, Anderson A A, Eason R W, Shepherd D P, Gill D S, Grivas C and Vainos N1997 Opt. Lett. 22 988
Related articles from Frontiers Journals
[1] ZHOU Zhi-Chao, TIAN Xue-Ping, DAI Qi-Biao, HAN Wen-Juan, HUANG Jia-Yin, LIU Jun-Hai, ZHANG Huai-Jin. The Laser Action of a Yb:CLNGG Crystal with an Efficiency Approaching Its Quantum Defect Imposed Limit[J]. Chin. Phys. Lett., 2012, 29(6): 440-441
[2] LIU Qin,LIU Jian-Li,JIAO Yue-Chun,FENG Jin-Xia,ZHANG Kuan-Shou**. A Stable 22-W Low-Noise Continuous-Wave Single-Frequency Nd:YVO4 Laser at 1.06 µm Directly Pumped by a Laser Diode[J]. Chin. Phys. Lett., 2012, 29(5): 440-441
[3] SU Zhou-Ping**,JI Zhi-Cheng,ZHU Zhuo-Wei,QUE Li-Zhi,ZHU Yun. Phase Locking of Laser Diode Array by Using an Off-Axis External Talbot Cavity[J]. Chin. Phys. Lett., 2012, 29(5): 440-441
[4] JIANG Man,ZHANG Qiu-Lin,ZHOU Wen-Jia,ZHANG Jing,ZHANG Dong-Xiang,FENG Bao-Hua**. Self-Q-Switched and Mode-Locked Cr,Nd:YAG Laser under Direct 885 nm Diode Laser Pumping[J]. Chin. Phys. Lett., 2012, 29(5): 440-441
[5] REN Cheng**,YANG Xing-Tuan,ZHANG Shu-Lian. Absolute Angular Displacement Determination Based on Laser-Frequency Splitting Technology[J]. Chin. Phys. Lett., 2012, 29(5): 440-441
[6] ZHENG Yao-Hui**,WANG Ya-Jun,PENG Kun-Chi. A High-Power Single-Frequency 540 nm Laser Obtained by Intracavity Frequency Doubling of an Nd:YAP Laser[J]. Chin. Phys. Lett., 2012, 29(4): 440-441
[7] CAO Dong,DU Shi-Feng**,PENG Qin-Jun,BO Yong,XU Jia-Lin,GUO Ya-Ding,ZHANG Jing-Yuan,CUI Da-Fu,XU Zu-Yan. A 171.4 W Diode-Side-Pumped Q-Switched 2 µm Tm:YAG Laser with a 10 kHz Repetition Rate[J]. Chin. Phys. Lett., 2012, 29(4): 440-441
[8] YAO Bao-Quan, DUAN Xiao-Ming, YU Zheng-Ping, WANG Yue-Zhu. Actively Q−Switched Laser Performance of Holmium-Doped Lu2SiO5 Crystal[J]. Chin. Phys. Lett., 2012, 29(3): 440-441
[9] YAN Ying, FAN Zhong-Wei, NIU Gang, YU Jin, ZHANG Heng-Li. A 46-W Laser Diode Stack End-Pumped Slab Amplifier with a Pulse Duration of Picoseconds[J]. Chin. Phys. Lett., 2012, 29(3): 440-441
[10] SHEN Ying-Jie, YAO Bao-Quan, DAI Tong-Yu, LI-Gang, DUAN Xiao-Ming, JU You-Lun, WANG Yue-Zhu. Performance of a c− and a-Cut Ho:YAP Laser at Room Temperature[J]. Chin. Phys. Lett., 2012, 29(3): 440-441
[11] ZHENG Yi-Bo, YAO Jian-Quan, ZHANG Lei, WANG Yuan, WEN Wu-Qi, JING Lei, DI Zhi-Gang. Three-Dimensional Thermal Analysis of 18-Core Photonic Crystal Fiber Lasers[J]. Chin. Phys. Lett., 2012, 29(2): 440-441
[12] ZHU Guo-Li, JU You-Lun, YAO Bao-Quan, WANG Yue-Zhu. A Dual-Crystal Cavity Ho,Tm:GdVO4 Laser[J]. Chin. Phys. Lett., 2012, 29(2): 440-441
[13] YU Yong-Ji, CHEN Xin-Yu, WANG Chao, WU Chun-Ting, LIU Rui, JIN Guang-Yong. A 200 kHz Q-Switched Adhesive-Free Bond Composite Nd:YVO4 Laser using a Double-Crystal RTP Electro-optic Modulator[J]. Chin. Phys. Lett., 2012, 29(2): 440-441
[14] TENG Hao, MA Jing-Long, WANG Zhao-Hua, ZHENG Yi, GE Xu-Lei, ZHANG Wei, WEI Zhi-Yi**, LI Yu-Tong, ZHANG Jie,. A 100-TW Ti:Sapphire Laser System at a Repetition Rate of 0.1 Hz[J]. Chin. Phys. Lett., 2012, 29(1): 440-441
[15] DING Xin, LI Xue, SHENG Quan, **, SHI Chun-Peng, YIN Su-Jia, LI Bin, YU Xuan-Yi, WEN Wu-Qi, YAO Jian-Quan, . High Power Widely Tunable Narrow Linewidth All-Solid-State Pulsed Titanium-Doped Sapphire Laser[J]. Chin. Phys. Lett., 2011, 28(9): 440-441
Viewed
Full text


Abstract