Chin. Phys. Lett.  2007, Vol. 24 Issue (2): 366-369    DOI:
Original Articles |
Determination of Tungsten Layer Profiles in Bilayer Structures Using X-Ray Reflectivity Method
XU Yao;WANG Zhan-Shan;WANG Bei;WANG Hong-Chang;WU Wen-Juan;ZHANG Shu-Min;ZHANG Zhong;WANG Feng-Li;QIN Shu-Ji;CHEN Ling-Yan
Institute of Precision Optical Engineering, Department of Physics, Tongji University, Shanghai 200092
Cite this article:   
XU Yao, WANG Zhan-Shan, WANG Bei et al  2007 Chin. Phys. Lett. 24 366-369
Download: PDF(216KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An effectual method is presented to determine the profiles of a tungsten (W) layer, such as the density, the thickness and the roughness in the multilayer structures, using the x-ray reflectivity technique. To avoid oxidation effects of tungsten, a B4C capping layer is deposited onto to the W layer. To observe the profiles of the tungsten layer with different thicknesses, three groups of W/B4C bilayers with different thicknesses are prepared by using ultra high vacuum dc magnetron sputtering and measured by an x-ray diffractometer. A type of genetic algorithm called the differential evolution is used to simulate
the measurement data so as to obtain the parameters of bilayers. According to the simulation, it is shown that the W layer density varies from 95.26% to 97.51% compared to the bulk. In our experiment, the deposition rate is .044nm/s, and the thickness is varied in the range of 9.8--19.4nm.
Keywords: 07.85.Jy      68.65.Ac      78.20.Bh     
Received: 15 May 2006      Published: 24 February 2007
PACS:  07.85.Jy (Diffractometers)  
  68.65.Ac (Multilayers)  
  78.20.Bh (Theory, models, and numerical simulation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I2/0366
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XU Yao
WANG Zhan-Shan
WANG Bei
WANG Hong-Chang
WU Wen-Juan
ZHANG Shu-Min
ZHANG Zhong
WANG Feng-Li
QIN Shu-Ji
CHEN Ling-Yan
[1] Windt D L, Donguy S, Seely J and Kjornrattanawanich B 2004 Applied Optics 47 9
[2] Holy V, Kubena J, Ohlidal I, Lischka K and Plotz W 1993 Phys.Rev. B 47 15896
[3] Stearns D G, Gaines D P, Sweeney D W and Gullikson E M 1994 J.Appl. Phys. 84 1003
[4] Chaiken A, Michel R P and Wall M A 1996 Phys. Rev. B 535518
[5] Marquardt D W 1963 J. Soc. Ind. Appl. Math. 11 431
[6] Wang H C, Wang Z S, Zhang S M, Wu W J, Zhang Z, Gu Z X, Xu Y, WangF L, Ceng X N, Wang B, Qin S J and Chen L Y 2005 Chin. Phys.Lett. 22 2106
[7] Denis Y, Yu W and Spaepen F 2004 J. Appl. Phys. 95 6
[8] Banerjeea S, Ferrari S, Piagge R and Spandoni S 2004 Appl.Phys. Lett. 84 3798
[9] Voorma H J and Louis E et al 1997 J. Appl. Phys. 816112
[10] Wormington M, Panaccione C et al 1999 Philos. Trans. R. Soc.London A 357 2827
[11] Windt D L, Christensen F E, Craig W W, Hailey C, Harrison F A,Jimenez-Garate M, Kalyanaraman R and Mao P h 2000 J. Appl. Phys. 88 460
Related articles from Frontiers Journals
[1] DU Ming-Di,SUN Jun-Qiang**,CHENG Wen-Long. THz Output Improvement in a Photomixer with a Resonant-Cavity-Enhanced Structure[J]. Chin. Phys. Lett., 2012, 29(4): 366-369
[2] LI Yue,DENG Ai-Hong,**,ZHOU Yu-Lu,ZHOU Bing,WANG Kang,HOU Qing,SHI Li-Qun,QIN Xiu-Bo,WANG Bao-Yi. Helium-Related Defect Evolution in Titanium Films by Slow Positron Beam Analysis[J]. Chin. Phys. Lett., 2012, 29(4): 366-369
[3] YAO Jie,YE Yong-Hong**. Super-Resolution Imaging by using a Metallic Rod Array in the Near Infrared Region[J]. Chin. Phys. Lett., 2012, 29(4): 366-369
[4] WU Ya-Min, CHEN Guo-Qing, MA Chao-Qun, XUE Si-Zhong, ZHU Zhuo-Wei. Optical Bistability in Graded Core-Shell Granular Composites[J]. Chin. Phys. Lett., 2012, 29(3): 366-369
[5] MA Jian-Yong, FAN Yong-Tao. Guided Mode Resonance Transmission Filters Working at the Intersection Region of the First and Second Leaky Modes[J]. Chin. Phys. Lett., 2012, 29(2): 366-369
[6] FU Xiao-Jian, XU Yuan-Da, ZHOU Ji. Abnormal Dielectric Response in an Optical Range Based on Electronic Transition in Rare-Earth-Ion-Doped Crystals[J]. Chin. Phys. Lett., 2012, 29(2): 366-369
[7] ZHANG Jin-Su, ZHONG Hai-Yang, SUN Jia-Shi, CHENG Li-Hong, LI Xiang-Ping, CHEN Bao-Jiu**. Reddish Orange Long-Lasting Phosphorescence in KY3F10:Sm3+ for X-Ray or Cathode Ray Tubes[J]. Chin. Phys. Lett., 2012, 29(1): 366-369
[8] WU Wen-Juan**, WANG Zhan-Shan, ZHU Jing-Tao, ZHANG Zhong, WANG Feng-Li, CHEN Ling-Yan, ZHOU Hong-Jun, HUO Tong-Lin . Spectral Resolution Improvement of Mo/Si Multilayers[J]. Chin. Phys. Lett., 2011, 28(8): 366-369
[9] ZHANG Li-Ran, DENG Ai-Hong, **, YANG Dong-Xu, ZHOU Yu-Lu, HOU Qing, SHI Li-Qun, ZHONG Yu-Rong, WANG Bao-Yi . Bias Effects on the Growth of Helium-Containing Titanium Films[J]. Chin. Phys. Lett., 2011, 28(7): 366-369
[10] CHEN San, **, Lu Hong-Yan, CHEN Kun-Ji**, XU Jun, MA Zhong-Yuan, LI Wei, HUANG Xin-Fan . Two-Dimensional Cavity Resonant Modes of Si Based Bragg Reflection Ridge Waveguide[J]. Chin. Phys. Lett., 2011, 28(6): 366-369
[11] WANG Zheng**, FAN Bin, ZHAO Xin-Jie, YUE Hong-Wei, HE Ming, JI Lu, YAN Shao-Lin, FANG Lan, Klushin A. M. . Characteristics of Off-Chip Millimeter-Wave Radiation from Serial Josephson Junction Arrays[J]. Chin. Phys. Lett., 2011, 28(6): 366-369
[12] ZHANG Zhi-Wei, **, WEN Ting-Dun, WU Zhi-Fang . A Novel Method for Heightening Sensitivity of Prism Coupler-Based SPR Sensor[J]. Chin. Phys. Lett., 2011, 28(5): 366-369
[13] FAN Bin, WANG Zheng, YUE Hong-Wei, YAN Shao-Lin**, JI Lu, HE Ming, SONG Feng-Bin, FANG Lan, ZHAO Xin-Jie . Coupling of a Tl2Ba2CaCu2O8 Thin Film Intrinsic Josephson Junction and a Fabry–Perot Resonator[J]. Chin. Phys. Lett., 2011, 28(3): 366-369
[14] ZHAO Chuan-Zhen**, LI Na-Na, WEI Tong, TANG Chun-Xiao . Temperature and Composition Dependence of GaNxAs1−x(0 < x ≤ 0.05) before and after Annealing[J]. Chin. Phys. Lett., 2011, 28(12): 366-369
[15] SU Yu-Huan, SHI Jin-Wei, LIU Da-He, YANG Guo-Jian. Detection of Perfect Cloak in Time Domain[J]. Chin. Phys. Lett., 2010, 27(9): 366-369
Viewed
Full text


Abstract