Chin. Phys. Lett.  2007, Vol. 24 Issue (12): 3495-3498    DOI:
Original Articles |
Disc-Capped ZnO Nanocombs
LI Xin1;XU Chun-Xiang1;ZHU Guang-Ping1;YANG Yi2;LIU Jin-Ping1;SUN Xiao-Wei1,2;CUI Yi-Ping1
1Advanced Photonic Center, School of Electronic Science and Engineering, Southeast University, Nanjing 2100962School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue 639798, Singapore
Cite this article:   
LI Xin, XU Chun-Xiang, ZHU Guang-Ping et al  2007 Chin. Phys. Lett. 24 3495-3498
Download: PDF(2516KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Nanocombs with a disc cap structure of ZnO have been synthesized on Si substrates by using pure Zinc powders as the source materials based on a vapour-phase transport process. The morphology and the microstructure are investigated by a scanning electron microscopy and x-ray diffraction. Based on the transmission electron microscopy and selected area electron diffraction analysis, the growth directions of three representative parts, nanoribbon stem, nanorod branch and nanodisc cap of the nanocomb are revealed. The
growth mechanism of the disc-capped nanocombs is discussed based on
the self-catalyzed vapour-liquid-solid process.
Keywords: 61.46.Hk      68.65.-k     
Received: 20 July 2007      Published: 03 December 2007
PACS:  61.46.Hk (Nanocrystals)  
  68.65.-k (Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I12/03495
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Xin
XU Chun-Xiang
ZHU Guang-Ping
YANG Yi
LIU Jin-Ping
SUN Xiao-Wei
CUI Yi-Ping
[1] Chen Y, Bagnall D M, Koh H, Park K, Hiraga K, Zhu Z and Yao T 1998 J. Appl. Phys. 84 3912
[2] Huang M H, Mao S, Feick H, Yan H Q, Wu Y Y, Kind H, Weber E, RussoR and Yang P D 2001 Science 292 1897
[3] Aoki T, Hatanaka Y and Look D C 2000 Appl. Phys. Lett. 76 3257
[4] Xu C X and Sun X W 2003 Appl. Phys. Lett. 83 3806
[5] Yu K, Zhang Y S, Ouyang S X, Zhang Q J, Luo L Q, Zhang Q X, Chang ZK, Li L J and Zhu Z Q 2005 Chin. Phys. Lett. 22 2411
[6] Dayan N J, Sainkar S R, Karekar R N and Aiyer R C 1998 Thin Solid Films 325 254
[7] Devaney W E, Chen W S, Stewart J M and Mickelsen R A 1990 IEEE Trans. Electron Devideces 37 428
[8] Wang P, Wang L D, Li B and Qiu Y 2005 Chin. Phys. Lett. 22 2708
[9] Hu J Q, Li Q, Meng X M, Lee C S and Lee S T 2003 Chem.Mater. 15 305
[10] Huang M H, Wu Y, Feick H, Tran N, Weber E and Yang P 2001 Adv. Mater. 13 113
[11] Xu C X, Sun X W, Chen B J, Sun C Q, Tay B K and Li S X S 2003 Chin. Phys. Lett. 20 1319
[12] Park W I, Kim D H, Jung S W and Yi G C 2002 Appl. Phys.Lett. 80 4232
[13] Li J Y, Chen X L, Wei Z F and Qiao Z Y 2001 Chin. Phys.Lett. 18 1527
[14] Wen J G, Lao J Y, Wang D Z, Kyaw T M, Foo Y L and Ren Z F 2003 Chem. Phys. Lett. 372 717
[15] Zhang M J, Zhang L D, Li G H and Shen W Z 2002 Chem.Phys. Lett. 363 123
[16] Vayssieres L, Keis K, Lindquist S E and Hagfeldt A 2001 J. Phys. Chem. B 105 3350
[17] Kong X Y and Wang Z L 2003 Nano Lett. 3 1625
[18] Xu C X, Sun X W, Dong Z L and Yu M B 2004 J. CrystalGrowth 270 498
[19] Huang H B, Yang S G, Gong J F and Liu H W 2005 J. Phys.Chem. B 109 20746
[20] Xu C X, Sun X W, Dong Z L and Yu M B 2004 Appl. Phys.Lett. 85 3878
[21] Yan H, He R, Johnson J, Law M, Saykally R J and Yang P 2003 J. Am. Chem. Soc. 125 4728
[22] Yang L W, Wu X L, Xiong Y, Yang Y M, Huang G S, Chu Paul K and SiuG G 2005 J. Crystal Growth 283 332
[23] Wang Z L, Kong X Y and Zuo J M 2003 Phys. Rev. Lett. 91 185502
[24] Tian Z, Voigt J A, Liu J, Mchenzie B, Mcdermott M J, Rodriguez MA, Konishi H and Xu H 2003 Nat. Mater. 21 821
[25] Hu J Q, Li Q, Wong N B, Lee C S and Lee S T 2002 Chem.Mater. 14 1216
[26] Han X H, Wang G Z and Jie J S 2005 J. Phys.Chem. B 109 2733
[27] Lao J Y, Huang J Y, Wang D Z and Ren Z F 2003 NanoLett. 3 235
Related articles from Frontiers Journals
[1] WANG Guo-Biao, XIONG Huan, LIN You-Xi, FANG Zhi-Lai, KANG Jun-Yong, DUAN Yu, SHEN Wen-Zhong. Green Emission from a Strain-Modulated InGaN Active Layer[J]. Chin. Phys. Lett., 2012, 29(6): 3495-3498
[2] GUO Jing-Wei**, HUANG Hui, REN Xiao-Min, YAN Xin, CAI Shi-Wei, GUO Xin, HUANG Yong-Qing, WANG Qi, ZHANG Xia, WANG Wei . Growth of Zinc Blende GaAs/AlGaAs Radial Heterostructure Nanowires by a Two-Temperature Process[J]. Chin. Phys. Lett., 2011, 28(3): 3495-3498
[3] Murtaza Saleem**, Saadat A. Siddiqi, Shahid Atiq, M. Sabieh Anwar . Structural and Magnetic Studies of Zn0.95Co0.05O and Zn0.90Co0.05Al0.05O[J]. Chin. Phys. Lett., 2011, 28(11): 3495-3498
[4] ZHANG Xian-Gao, CHEN Kun-Ji, FANG Zhong-Hui, QIAN Xin-Ye, LIU Guang-Yuan, JIANG Xiao-Fan, MA Zhong-Yuan, XU Jun, HUANG Xin-Fan, JI Jian-Xin, HE Fei, SONG Kuang-Bao, ZHANG Jun, WAN Hui, WANG Rong-Hua. Discrete Charge Storage Nonvolatile Memory Based on Si Nanocrystals with Nitridation Treatment[J]. Chin. Phys. Lett., 2010, 27(8): 3495-3498
[5] YE Xian, HUANG Hui, REN Xiao-Min, YANG Yi-Su, GUO Jing-Wei, HUANG Yong-Qing, WANG Qi. Growth of Pure Zinc Blende GaAs Nanowires: Effect of Size and Density of Au Nanoparticles[J]. Chin. Phys. Lett., 2010, 27(4): 3495-3498
[6] LI Zhan-Guo, LIU Guo-Jun**, LI Lin, FENG Ming, LI Mei, LU Peng, ZOU Yong-Gang, LI Lian-He, GAO Xin. Strain-Engineered Low-Density InAs Bilayer Quantum Dots for Single Photon Emission[J]. Chin. Phys. Lett., 2010, 27(12): 3495-3498
[7] NI Heng-Kan, ZOU Qiang**, FU Xing, WU Sen, WANG Hui, XUE Tao . Production of ZnO Nanobelts and Meso-Scale Study of Mechanical Properties[J]. Chin. Phys. Lett., 2010, 27(11): 3495-3498
[8] MAO Ping, ZHANG Zhi-Gang, PAN Li-Yang, XU Jun, CHEN Pei-Yi. Nonvolatile Memory Characteristics with Embedded High Density Ruthenium Nanocrystals[J]. Chin. Phys. Lett., 2009, 26(5): 3495-3498
[9] MAO Ping, ZHANG Zhi-Gang, PAN Li-Yang, XU Jun, CHEN Pei-Yi. High-Density Stacked Ru Nanocrystals for Nonvolatile Memory Application[J]. Chin. Phys. Lett., 2009, 26(4): 3495-3498
[10] LI Ping-Yun, CAO Zhen-Hua, ZHANG Xi-Yan, WU Xiao-Lei, HUANG Yi-Neng, MENG Xiang-Kang. Curie Transition of NC Nickel by Mechanical Spectroscopy and Magnetization Study[J]. Chin. Phys. Lett., 2009, 26(3): 3495-3498
[11] S. Duhan, P. Aghamkar,. Interfacial Reactions and Cubic Neodymium Oxide Formation in Low Dispersed Nd2O3-SiO2 System by Wet Chemical Method[J]. Chin. Phys. Lett., 2009, 26(1): 3495-3498
[12] HUANG Xiao-Peng, HUAI Xiu-Lan. Molecular Dynamics Simulation of Thermal Conductivity in Si--Ge Nanocomposites[J]. Chin. Phys. Lett., 2008, 25(8): 3495-3498
[13] HUANG Wei, CHI Ying-Zhi, WANG Xi, ZHOU Shi-Feng, WANG Li, WUE, ZENG He-Ping, QIU Jian-Rong. Tunable Infrared Luminescence and Optical Amplification in PbS Doped Glasses[J]. Chin. Phys. Lett., 2008, 25(7): 3495-3498
[14] GUO Xiao-Lin, SHAN De-Bin, MA Ming-Zhen, GUO Bin. Compressive Deformation Induced Nanocrystallization of a Supercooled Zr-Based Bulk Metallic Glass[J]. Chin. Phys. Lett., 2008, 25(6): 3495-3498
[15] HAO Xiao-Peng, WANG Bao-Yi, YU Run-Sheng, WEI Long, WANG Hui, ZHAO De-Gang, HAO Wei-Chang. Evolution of Structural Defects in SiOx Films Fabricated by Electron Cyclotron Resonance Plasma Chemical Vapour Deposition upon Annealing Treatment[J]. Chin. Phys. Lett., 2008, 25(3): 3495-3498
Viewed
Full text


Abstract