Chin. Phys. Lett.  2007, Vol. 24 Issue (11): 3222-3224    DOI:
Original Articles |
Self-Trapping of Acoustic Polaron in One Dimension
HOU Jun-Hua;LIANG Xi-Xia
Department of Physics, Inner Mongolia University, Hohhot 010021
Cite this article:   
HOU Jun-Hua, LIANG Xi-Xia 2007 Chin. Phys. Lett. 24 3222-3224
Download: PDF(211KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The ground-state energy and effective mass of an acoustic polaron in one
dimension are calculated by using an electron--longitudinal-acoustic-phonon interaction Hamiltonian derived here. The self-trapping of the acoustic polaron is discussed. It is found that the critical coupling constant shifts toward weaker electron--phonon interaction with the increasing cutoff wave vector and the products of the critical coupling constant by the cutoff wave vector
tend to a certain value. The self-trapping of acoustic polarons in one
dimension is easier to be realized than that in three- and two-dimensional systems. The self-trapping transition of acoustic polarons is expected to be observed in the one dimensional systems of alkali halides and wide-band-gap semiconductors.
Keywords: 71.38.Fp      73.20.Mf      63.20.Kr     
Received: 02 June 2007      Published: 23 October 2007
PACS:  71.38.Fp (Large or Fr?hlich polarons)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  63.20.Kr  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I11/03222
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HOU Jun-Hua
LIANG Xi-Xia
[1] Khan M A and Shur M S et al 1995 Appl. Phys. Lett. 66 1083
[2] Bungaro C, Rapcewicz K and Bernholc J 2000 Phys. Rev. B 61 6720
[3] Ruf T and Serrano J et al 2001 Phys. Rev. Lett. 86 906
[4] Yu H B, Chen H, Li D S and Zhou J M 2004 Chin. Phys.Lett. 21 1323
[5] Lu Y W, Cai L and Liang S 2006 Chin. Phys. Lett. 23 956
[6] Hayes W and Jenkin T J L 1986 J. Phys. C: SolidState Phys 19 6211
[7] Iwanaga M and Shirai M et al 2002 Phys. Rev. B 66064304
[8] Sumi A and Toyozawa Y 1973 J. Phys. Soc. Jpn. 35 137
[9] Peeters F M and Devreese J T 1985 Phys. Rev. B 323515
[10] Farias G A, da Costa W B and Peeters F M 1996 Phys.Rev. B 54 12835
[11] Wellein G and Fehske H 1998 Phys. Rev. B 58 6208
[12] Ryzhii V and Vyurkov V 2003 Phys. Rev. B 68165406
[13] Kirova N and Bussac M N 2003 Phys. Rev. B 68235312
[14] Hou J H and Liang X X 2007 Chin. Phys. 16 3059
[15] Huybrechts W J 1977 J. Phys C: Solid State Phys 10 3761
[16] Sarma S D and Mason B A 1985 Ann. Phys. 163 78
[17] Peeters F M, Wu X G and Devreese J T 1986 Phys. Rev. B 33 3926
[18] Liang X X and Hou J H 2004 Phys. Status Solidi C 1 2803
Related articles from Frontiers Journals
[1] KIM Un-Chol, JIANG Xiao-Qing. Numerical Analysis of Efficiency Enhancement in Plasmonic Thin-Film Solar Cells by Using the SILVACO TCAD Simulator[J]. Chin. Phys. Lett., 2012, 29(6): 3222-3224
[2] ZHAI Zhi-Yuan, YANG Tao, PAN Xiao-Yin**. Exact Propagator for the Anisotropic Two-Dimensional Charged Harmonic Oscillator in a Constant Magnetic Field and an Arbitrary Electric Field[J]. Chin. Phys. Lett., 2012, 29(1): 3222-3224
[3] WANG Peng, WANG Rong-Yao**, JIN Jing-Yang, XU Le, SHI Qing-Fan**. The Morphological Change of Silver Nanoparticles in Water[J]. Chin. Phys. Lett., 2012, 29(1): 3222-3224
[4] BAI Yi-Ming**, WANG Jun, CHEN Nuo-Fu, YAO Jian-Xi, ZHANG Xing-Wang, YIN Zhi-Gang, ZHANG Han, HUANG Tian-Mao . Dipolar and Quadrupolar Modes of SiO2/Au Nanoshell Enhanced Light Trapping in Thin Film Solar Cells[J]. Chin. Phys. Lett., 2011, 28(8): 3222-3224
[5] LI Ming-Zhu, AN Zheng-Hua**, ZHOU Lei, MAO Fei-Long, WANG Heng-Liang . Strong Coupling between Propagating and Localized Surface Plasmons in Plasmonic Cavities[J]. Chin. Phys. Lett., 2011, 28(7): 3222-3224
[6] CAO Zhi-Shen, PAN Jian, CHEN Zhuo, ZHAN Peng, MIN Nai-Ben, WANG Zhen-Lin** . Pure Electric and Pure Magnetic Resonances in Near-Infrared Metal Double-Triangle Metamaterial Arrays[J]. Chin. Phys. Lett., 2011, 28(5): 3222-3224
[7] SUN Bao-Qing, GU Ying**, HU Xiao-Yong, GONG Qi-Huang** . A Trade-off between Propagation Length and Light Confinement in Cylindrical Metal-Dielectric Waveguides[J]. Chin. Phys. Lett., 2011, 28(5): 3222-3224
[8] LIU Xiao-Lan, PENG Xiao-Niu, YANG Zhong-Jian, LI Min, ZHOU Li** . Linear and Nonlinear Optical Properties of Micrometer-Scale Gold Nanoplates[J]. Chin. Phys. Lett., 2011, 28(5): 3222-3224
[9] ZHENG Jing-Gao, SUN Jia-Lin**, XUE Ping** . Negative Photoconductivity Induced by Surface Plasmon Polaritons in the Kretschmann Configuration[J]. Chin. Phys. Lett., 2011, 28(12): 3222-3224
[10] LIU Tao**, HUANG Zheng . High-Efficiency Graphene Photo Sensor Using a Transparent Electrode[J]. Chin. Phys. Lett., 2011, 28(10): 3222-3224
[11] WANG Xu-Dong, YE Yong-Hong, MA Ji, JIANG Mei-Ping. Influence of Filling Medium of Holes on the Negative-Index Response of Sandwiched Metamaterials[J]. Chin. Phys. Lett., 2010, 27(9): 3222-3224
[12] WANG Xu-Dong, YE Yong-Hong, ZHENG Chao. Dual-Band Negative-Index Materials with Sandwich Configuration[J]. Chin. Phys. Lett., 2010, 27(3): 3222-3224
[13] ZHOU Bing, LI Dong-Sheng, XIANG Lue-Lue, YANG De-Ren. Enhanced Optical Absorption of Amorphous Silicon Films by Ag Nanostructures[J]. Chin. Phys. Lett., 2010, 27(3): 3222-3224
[14] . Numerical Confirmation of Multi-Reflections of Light Inside a Subwavelength Metal Slit Structure[J]. Chin. Phys. Lett., 2010, 27(3): 3222-3224
[15] YUE Song, LI Zhi, CHEN Jian-Jun, GONG Qi-Huang. Bending Loss Calculation of a Dielectric-Loaded Surface Plasmon Polariton Waveguide Structure[J]. Chin. Phys. Lett., 2010, 27(2): 3222-3224
Viewed
Full text


Abstract