Chin. Phys. Lett.  2007, Vol. 24 Issue (10): 2891-2894    DOI:
Original Articles |
Influence of Length of Opposing bi-Au Cone-Tips and Different Environment on Field Enhancement in Feed Gap
LI Xu-Feng;WU Shi-Fa
School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024
Cite this article:   
LI Xu-Feng, WU Shi-Fa 2007 Chin. Phys. Lett. 24 2891-2894
Download: PDF(263KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Electric field enhancement distributions encountered in feed gap of opposing bi-Au cone-tips is studied using a frequency-domain three-dimensional finite element method to solve Maxwell's equations of electric field distributions. Both the influences of cone-tip length and surrounding medium on electric field enhancement are investigated. The maximal enhancement value is discussed in terms of a simple physical model based on a standing wave on the tip surface associated with the antenna effect and surface plasmon. Simulated results demonstrate the enhancement is sensitive to the tip length.
By selecting a suitably matched scale according to the incident wavelength, a large enhancement value can be observed within a small focused spot between the opposing tips permitting a high spatial resolution. The relative position of the opposing tips is also found for the optimum enhancement. All of the results suggest that our configuration is suitable for the site-specific Raman spectroscopic analysis at nanoscale.
Keywords: 47.11.Fg      47.61.-k     
Received: 15 June 2007      Published: 20 September 2007
PACS:  47.11.Fg (Finite element methods)  
  47.61.-k (Micro- and nano- scale flow phenomena)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I10/02891
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Xu-Feng
WU Shi-Fa
[1] Lu H P 2005 J. Phys.: Condens. Matter. 17 333
[2]Hayazawa N, Sekkat Z and Kawata S 2001 Chem. Phys. Lett. 305 369
[3]Stokle R M, Suh Y D, Deckert V and Zenobi R 2000 Chem.Phys. Lett. 318 131
[4]Anderson M S and Pike W T 2003 Rev. Sci. Instrum. 73 1198
[5]Hartschuh A, S\'anchez E J, Xie X S and Novotny L 2003 Phys. Rev. Lett. 90 095503
[6]Richarda D, Milner R G and Huang F 2003 J. RamanSpectrosc. 34 663
[7]Novotny L, Bian R X and Xie X S 1997 Phys. Rev. Lett. 79 645
[8]Pettinger B, Picardi G, Schuster R and Ertl G 2002 Single.Mol. 3 285
[9]Hu D, Micic M, Klymyshyn N, Suh Y D and Lu H P 2003 Rev.Sci. Instrum. 74 3347
[10]Trabesinger W, Kramer A, Kreiter M, Hecht B and Wild U P 2002 Appl. Phys. Lett. 81 2118
[11]Kneipp K, Wang Y, Kneipp H, Itzkan I and Dasari R G 1996 Phys. Rev. Lett. 76 2444
[12]Xu H, Bjerneld E J, Kall M and B\"orjesson L 1999 Phys.Rev. Lett. 83 4357
[13]Bjerneld E J, Folder-Papp Z, Kall M and Rigler R 2002 J.Phys. Chem. B 106 1213
[14]Moyer P J, Schmidt J, Eng L M and Meixner A J 2000 J. Am.Chem. Soc. 122 5409
[15]Xu H and Kall M 2002 Phys. Rev. Lett. 89 246802
[16]Courant R L 1943 Bull. Am. Math. Soc. 5 1
[17]Silvester P P 1969 Alta Frequenza 38 313
[18]Crozier K B, Sundaramurthy A, Kino G S and Quate C F 2003 J. Appl. Phys. 94 4632
Related articles from Frontiers Journals
[1] LV Hong, TANG Sheng-Li**, ZHOU Wen-Ping . Direct Numerical Simulation of Particle Migration in a Simple Shear Flow[J]. Chin. Phys. Lett., 2011, 28(8): 2891-2894
[2] ZHAO Quan-Liang, YUAN Jie, LIU Hong-Mei, DUAN Zhong-Xia, ZHANG Wen-Tong, QIU Cheng-Jun, CAO Mao-Sheng. Stationary Fluid Dynamic Behaviour of V-Shaped Diffuser/Nozzle Elements for Valveless Micropump[J]. Chin. Phys. Lett., 2008, 25(4): 2891-2894
[3] CHEN Yan-Yan, , YI Hou-Hui, LI Hua-Bing,. Boundary Slip and Surface Interaction: A Lattice Boltzmann Simulation[J]. Chin. Phys. Lett., 2008, 25(1): 2891-2894
Viewed
Full text


Abstract