Chin. Phys. Lett.  2007, Vol. 24 Issue (10): 2870-2872    DOI:
Original Articles |
Propagation Properties of Gaussian-Shaped and Double-Side Unsymmetrical Metallic Nano-Corrugations
LUO Xian-Gang
State Key Laboratory of Optical Technologies for Microfabrication, Institute of Optics and Electronics, Chinese Academy of Sciences, PO Box 350, Chengdu 610209
Cite this article:   
LI Hai-Ying, DU Chun-Lei, CHEN Xu-Nan et al  2007 Chin. Phys. Lett. 24 2870-2872
Download: PDF(246KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A Gaussian-shaped and double-side unsymmetrical groove structure is presented. Rigorous calculation of the optical properties of the structure is performed on the basis of a multiple multipole program. We analyse the effect of the grating period, the groove width and the film thickness on transmission and reflectance. Simulation results demonstrate that surface-plasmon-polariton resonance positions depend strongly on the structure period and can be changed slightly by the variation of incomplete perforation thickness, while the resonance peak values can be controlled by tuning the groove width. Our results not only give an insight into the physical mechanisms of the
double-side unsymmetrical gratings, but also open a way to design novel
nano-photonic devices.
Keywords: 42.79.Dj     
Received: 15 June 2007      Published: 20 September 2007
PACS:  42.79.Dj (Gratings)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I10/02870
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Hai-Ying
DU Chun-Lei
CHEN Xu-Nan
LUO Xian-Gang
[1] Moreno E and Hafner C 2002 J. Opt. Soc. Am. A 19 101
[2] Zayats A V, Smolyaninov I I and Maradudin A A 2005 Phys.Rep. 408 131
[3] Kreibig U and Vollmer M 1995 Optical Properties of MetalClusters (Berlin: Springer)
[4] Raether H 1988 Surface Plasmons on Smooth and Rough Surfacesand on Corrugations (Berlin: Springer)
[5] Ebbesen T W, Lezec H J, Ghaemi H F, Thio T and Wolff P A 1998 Nature 391 667
[6] Porto J A, Garc\'a-Vidal F J and Pendry J B 1999 Phys. Rev.Lett. 83 2845
[7] Shou X, Agrawal A and Nahata A 2005 Opt. Exp. 13 9834
[8] Neviere M, Popov E, Reinisch R and Vitrant G 2000 Electromagnetic Resonances in Nonlinear Optics (Singapore: Gordon andBreach) chap 1 p10
[9] Li L 1966 J. Opt. Soc. Am. A 13 1024
[10] Wriedt T 1998 Part. Part. Syst. Charact. 15 67
[11] Hafner C 1998 MaX-1 (UK: Wiley)
[12] Tan W C, Preist T W and Sambles J R 2000 Phys. Rev. B 62 11 134
[13] Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
Related articles from Frontiers Journals
[1] LI Cheng-Guo, GAO Yong-Hao, XU Xing-Sheng. Angular Tolerance Enhancement in Guided-Mode Resonance Filters with a Photonic Crystal Slab[J]. Chin. Phys. Lett., 2012, 29(3): 2870-2872
[2] KONG Duan-Hua, ZHU Hong-Liang, LIANG Song, WANG Bao-Jun, BIAN Jing, MA Li, YU Wen-Ke, LOU Cai-Yun . Influence Factors of an All-Optical Recovered Clock from Two-Section DFB Lasers[J]. Chin. Phys. Lett., 2011, 28(9): 2870-2872
[3] LU Yun-Qing, LI Pei-Li, ZHENG Jia-Jin. The Axial Spatial Evolution of Optical Field near the Talbot Plane of a Grating[J]. Chin. Phys. Lett., 2010, 27(9): 2870-2872
[4] WU Wen-Xuan, LUO Yan-Hua, CHENG Xu-Sheng, TIAN Xiu-Jie, QIU Wei-Wei, REN Xi-Feng, ZHU Bing, ZHANG Qi-Jin,. Effect of Zeroth-Order beam on Azobenzene Polymer Surface Relief Gratings Fabricated by Phase-Mask Method[J]. Chin. Phys. Lett., 2010, 27(9): 2870-2872
[5] KANG Xiu-Bao, TAN Wei, WANG Zhan-Shan, WANG Zhi-Guo, CHEN Hong. High Efficiency One-Way Transmission by One-Dimensional Photonic Crystals with Gratings on One Side[J]. Chin. Phys. Lett., 2010, 27(7): 2870-2872
[6] HU Xu-Hui, GONG Ke, SUN Tian-Yu, WU Dong-Min. Polarization-Independent Guided-Mode Resonance Filters under Oblique Incidence[J]. Chin. Phys. Lett., 2010, 27(7): 2870-2872
[7] WU Bao-Jian, LU Xin, QIU Kun. Magneto-Optic Fiber Gratings Useful for Dynamic Dispersion Management and Tunable Comb Filtering[J]. Chin. Phys. Lett., 2010, 27(6): 2870-2872
[8] LI Li-Sha, FENG Xuan-Qi. Synthesis of Fiber Bragg Gratings with Right-Angled Triangular Spectrum[J]. Chin. Phys. Lett., 2010, 27(5): 2870-2872
[9] WANG Ying, LI Yu-Hua, LU Pei-Xiang. Infrared Femtosecond Laser Direct-Writing Digital Volume Gratings in Fused Silica[J]. Chin. Phys. Lett., 2010, 27(4): 2870-2872
[10] ZHAO Hua-Jun, YUAN Dai-Rong, WANG Pei, LU Yong-Hua, MING Hai. Design of a Fused-Silica Subwavelength Polarizing Beam Splitter Grating Based on the Modal Method[J]. Chin. Phys. Lett., 2010, 27(2): 2870-2872
[11] HAN Wei, HUANG Wan-Qing, LI Ke-Yu, WANG Fang, FENG Bin, JIA Huai-Ting, LI Fu-Quan, XIANG Yong, JING Feng, ZHENG Wan-Guo . Stimulated Brillouin Scattering Damage of Large-Aperture Fused Silica Grating[J]. Chin. Phys. Lett., 2010, 27(12): 2870-2872
[12] GUO Wan-Hong, LIU Jun-Qi**, LU Quan-Yong, ZHANG Wei, JIANG Yu-Chao, LI Lu, WANG Li-Jun, LIU Feng-Qi, WANG Zhan-Guo . Surface Emitting Distributed Feedback Quantum Cascade Laser around 8.3 μm[J]. Chin. Phys. Lett., 2010, 27(11): 2870-2872
[13] KANG Guo-Guo, TAN Qiao-Feng, JIN Guo-Fan. Optimal Design of an Achromatic Angle-Insensitive Phase Retarder Used in MWIR Imaging Polarimetry[J]. Chin. Phys. Lett., 2009, 26(7): 2870-2872
[14] ZHOU Xiu-Li, FU Yong-Qi, WANG Shi-Yong, PENG An-Jin, CAI Zhong-Heng. Funnel-Shaped Arrays of Metal Nano-Cylinders for Nano-Focusing[J]. Chin. Phys. Lett., 2008, 25(9): 2870-2872
[15] ZHANG De-Long, YANG Qing-Zhong, E. Y. B. Pun. Proposals for Fabrication of Long-Period Grating in LiNbO3 Strip Waveguides[J]. Chin. Phys. Lett., 2008, 25(8): 2870-2872
Viewed
Full text


Abstract