Chin. Phys. Lett.  2006, Vol. 23 Issue (12): 3187-3189    DOI:
Original Articles |
Robust Blind Adaptive Channel Equalization in Chaotic Communication Systems
Key Lab of Signal and Information Processing, Southwest Jiaotong University, Chengdu 610031
Cite this article:   
ZHANG Jia-Shu 2006 Chin. Phys. Lett. 23 3187-3189
Download: PDF(219KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based on the bounded property and statistics of chaotic signal and the idea of set-membership identification, we propose a set-membership generalized least mean square (SM-GLMS) algorithm with variable step size for blind adaptive channel equalization in chaotic communication systems. The steady state performance of the proposed SM-GLMS algorithm is analysed, and comparison with an extended Kalman filter (EKF)-based adaptive algorithm and variable gain least mean square (VG-LMS) algorithm is performed for blind adaptive channel equalization. Simulations show that the proposed SM-GLMS algorithm can provide more significant steady state performance improvement than the EKF-based adaptive algorithm and VG-LMS algorithm.
Keywords: 05.45.-a     
Published: 01 December 2006
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 3187-3189
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 3187-3189
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 3187-3189
[4] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 3187-3189
[5] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 3187-3189
[6] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 3187-3189
[7] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 3187-3189
[8] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 3187-3189
[9] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 3187-3189
[10] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 3187-3189
[11] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 3187-3189
[12] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 3187-3189
[13] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 3187-3189
[14] HUANG Jia-Min, TAO Wei-Ming**, XU Bo-Hou. Evaluation of an Asymmetric Bistable System for Signal Detection under Lévy Stable Noise[J]. Chin. Phys. Lett., 2012, 29(1): 3187-3189
[15] WANG Can-Jun** . Vibrational Resonance in an Overdamped System with a Sextic Double-Well Potential[J]. Chin. Phys. Lett., 2011, 28(9): 3187-3189
Full text