Chin. Phys. Lett.  2006, Vol. 23 Issue (11): 2996-2998    DOI:
Original Articles |
Broadband Near-Infrared Emission from Transparent Ni2+-Doped Sodium Aluminosilicate Glass Ceramics
ZHOU Shi-Feng1;FENG Gao-Feng1;XU Shi-Qing1,3;WU Bo-Tao2;QIU Jian-Rong1
1State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 2Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 3Institute of Optoelectronic Materials and Devices, College of Information Engineering, China Jiliang University, Hangzhou 310018
Cite this article:   
ZHOU Shi-Feng, FENG Gao-Feng, XU Shi-Qing et al  2006 Chin. Phys. Lett. 23 2996-2998
Download: PDF(234KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Broadband near-infrared emission from transparent Ni2+-doped sodium aluminosilicate glass-ceramics is observed. The broad emission is centred at 1290nm and covers the whole telecommunication wavelength region (1100--1700nm) with full width at half maximum of about 340nm. The observed infrared emission could be attributed to the 3T2(F) → 3A2(F) transition of octahedral Ni2+ ions that occupy high-field sites in nanocrystals. The product of the lifetime and the stimulated emission cross section is 2.15×10-24cm2s. It is suggested that Ni2+-doped sodium aluminosilicate glass ceramics have potential applications in tunable broadband light sources and broadband amplifiers.
Keywords: 42.70.Hj      42.79.Sz      33.50.Dq     
Published: 01 November 2006
PACS:  42.70.Hj (Laser materials)  
  42.79.Sz (Optical communication systems, multiplexers, and demultiplexers?)  
  33.50.Dq (Fluorescence and phosphorescence spectra)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2006/V23/I11/02996
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHOU Shi-Feng
FENG Gao-Feng
XU Shi-Qing
WU Bo-Tao
QIU Jian-Rong
Related articles from Frontiers Journals
[1] SUN Dun-Lu**,LUO Jian-Qiao,XIAO Jing-Zhong,ZHANG Qing-Li,CHEN Jia-Kang,LIU Wen-Peng,KANG Hong-Xiang,YIN Shao-Tang. Luminescence and Thermal Properties of Er:GSGG and Yb,Er:GSGG Laser Crystals[J]. Chin. Phys. Lett., 2012, 29(5): 2996-2998
[2] YU Yong-Ji, CHEN Xin-Yu, WANG Chao, WU Chun-Ting, LIU Rui, JIN Guang-Yong. A 200 kHz Q-Switched Adhesive-Free Bond Composite Nd:YVO4 Laser using a Double-Crystal RTP Electro-optic Modulator[J]. Chin. Phys. Lett., 2012, 29(2): 2996-2998
[3] DONG Jian-Ji**, LUO Bo-Wen, ZHANG Yin, LEI Lei, HUANG De-Xiu, ZHANG Xin-Liang. All-Optical Temporal Differentiator Using a High Resolution Optical Arbitrary Waveform Shaper[J]. Chin. Phys. Lett., 2012, 29(1): 2996-2998
[4] CHEN Xiao-Yong, SHENG Xin-Zhi**, WU Chong-Qing. Influence of Multi-Cascaded Semiconductor Optical Amplifiers on the Signal in an Energy-Efficient System[J]. Chin. Phys. Lett., 2012, 29(1): 2996-2998
[5] CHEN Yan-Zhong, LIU Wen-Bin, BO Yong**, JIANG Ben-Xue, XU Jian, KOU Hua-Min, XU Yi-Ting, PAN Yu-Bai, XU Jia-Lin, GUO Ya-Ding, YANG Feng-Tu, PENG Qin-Jun, CUI Da-Fu, JIANG Dong-Liang, XU Zu-Yan . A 526 W Diode-Pumped Nd:YAG Ceramic Slab Laser[J]. Chin. Phys. Lett., 2011, 28(9): 2996-2998
[6] KONG Duan-Hua, ZHU Hong-Liang, LIANG Song, WANG Bao-Jun, BIAN Jing, MA Li, YU Wen-Ke, LOU Cai-Yun . Influence Factors of an All-Optical Recovered Clock from Two-Section DFB Lasers[J]. Chin. Phys. Lett., 2011, 28(9): 2996-2998
[7] HOU Pei-Pei, ZHI Ya-Nan**, ZHOU Yu, SUN Jian-Feng, LIU Li-Ren . An Optical 2×4 90° Hybrid Based on a Birefringent Crystal for a Coherent Receiver in a Free-Space Optical Communication System[J]. Chin. Phys. Lett., 2011, 28(7): 2996-2998
[8] LIU Jie**, YANG Ji-Min, WANG Wei-Wei, ZHENG Li-He, SU Liang-Bi, XU Jun . Kerr-Lens Self-Mode-Locked Laser Characteristics of Yb:Lu2SiO5 Crystal[J]. Chin. Phys. Lett., 2011, 28(7): 2996-2998
[9] QIAO Yao-Jun**, LIU Xue-Jun, JI Yue-Feng . Fiber Nonlinearity Post-Compensation by Optical Phase Conjugation for 40Gb/s CO-OFDM Systems[J]. Chin. Phys. Lett., 2011, 28(6): 2996-2998
[10] XU Peng-Fei, YANG Tao**, JI Hai-Ming, CAO Yu-Lian, GU Yong-Xian, WANG Zhan-Guo . Temperature Compensation for Threshold Current and Slope Efficiency of 1.3µm InAs/GaAs Quantum-Dot Lasers by Facet Coating Design[J]. Chin. Phys. Lett., 2011, 28(4): 2996-2998
[11] ZHU Jia-Hu, HUANG Xu-Guang**, TAO Jin, XIE Jin-Ling . A Full-Duplex Radio-over-Fiber System Based on Frequency Twelvefold[J]. Chin. Phys. Lett., 2011, 28(2): 2996-2998
[12] XU Ming**, ZHOU Zhen, PU Xiao, JI Jian-Hua, YANG Shu-Wen . Phase Noise Monitor and Reduction by Parametric Saturation Approach in Phase Modulation Systems[J]. Chin. Phys. Lett., 2011, 28(2): 2996-2998
[13] LI Xu, GUAN Li**, AN Jia-Yi, JIN Li-Tao, YANG Zhi-Ping, YANG Yan-Min, LI Pan-Lai, FU Guang-Sheng . Synthesis of Red Phosphor CaZrO3:Eu3+ for White Light-Emitting Diodes[J]. Chin. Phys. Lett., 2011, 28(2): 2996-2998
[14] LI Pan-Lai**, WANG Zhi-Jun, YANG Zhi-Ping, GUO Qing-Lin . Luminescence and Site Occupancy of Eu2+ in Ba2 Ca(BO3)2[J]. Chin. Phys. Lett., 2011, 28(1): 2996-2998
[15] TIAN Feng, ZHANG Xiao-Guang, LI Jian-Ping, XI Li-Xia. An Experiment for Generating the 14-Tone Stable Carriers Using Recirculating Frequency Shifter[J]. Chin. Phys. Lett., 2010, 27(9): 2996-2998
Viewed
Full text


Abstract