Chin. Phys. Lett.  2005, Vol. 22 Issue (9): 2313-2315    DOI:
Original Articles |
A New Lattice Boltzmann Model for KdV-Burgers Equation
MA Chang-Feng
College of Mathematics and Physics, Zhejiang Normal University, Zhejiang 321004 Department of Computer Science and Mathematics, Guilin Institute of Electronic Technology, Guangxi 541004
Cite this article:   
MA Chang-Feng 2005 Chin. Phys. Lett. 22 2313-2315
Download: PDF(224KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A new lattice Boltzmann model with amending-function for KdV-Burgers equation, ut+uux-α uxx+βuxxx=0, is presented by using the single-relaxation form of the lattice Boltzmann equation. Applying the proposed model, we simulate the solutions of a kind of KdV-Burgers equations, and the numerical results agree with the analytical solutions quite well.
Keywords: 45.10.-b      46.12.-x      05.40.-a     
Published: 01 September 2005
PACS:  45.10.-b (Computational methods in classical mechanics)  
  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
MA Chang-Feng
Related articles from Frontiers Journals
[1] BAI Zhan-Wu. Role of the Bath Spectrum in the Specific Heat Anomalies of a Damped Oscillator[J]. Chin. Phys. Lett., 2012, 29(6): 2313-2315
[2] SHU Chang-Zheng,NIE Lin-Ru**,ZHOU Zhong-Rao. Stochastic Resonance-Like and Resonance Suppression-Like Phenomena in a Bistable System with Time Delay and Additive Noise[J]. Chin. Phys. Lett., 2012, 29(5): 2313-2315
[3] MEI Li-Jie,WU Xin**,LIU Fu-Yao. A New Class of Scaling Correction Methods[J]. Chin. Phys. Lett., 2012, 29(5): 2313-2315
[4] DUAN Wen-Qi. Formation Mechanism of the Accumulative Magnification Effect in a Financial Time Series[J]. Chin. Phys. Lett., 2012, 29(3): 2313-2315
[5] TIAN Liang, LIN Min. Relaxation of Evolutionary Dynamics on the Bethe Lattice[J]. Chin. Phys. Lett., 2012, 29(3): 2313-2315
[6] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 2313-2315
[7] GU Shi-Jian**, WANG Li-Gang, WANG Zhi-Guo, LIN Hai-Qing. Repeater-Assisted Zeno Effect in Classical Stochastic Processes[J]. Chin. Phys. Lett., 2012, 29(1): 2313-2315
[8] HUANG Jia-Min, TAO Wei-Ming**, XU Bo-Hou. Evaluation of an Asymmetric Bistable System for Signal Detection under Lévy Stable Noise[J]. Chin. Phys. Lett., 2012, 29(1): 2313-2315
[9] ZHANG Lu, ZHONG Su-Chuan, PENG Hao, LUO Mao-Kang** . Stochastic Multi-Resonance in a Linear System Driven by Multiplicative Polynomial Dichotomous Noise[J]. Chin. Phys. Lett., 2011, 28(9): 2313-2315
[10] LI Rong, WU Xin** . Two New Fourth-Order Three-Stage Symplectic Integrators[J]. Chin. Phys. Lett., 2011, 28(7): 2313-2315
[11] LI Chun, MEI Dong-Cheng, ** . Effects of Time Delay on Stability of an Unstable State in a Bistable System with Correlated Noises[J]. Chin. Phys. Lett., 2011, 28(4): 2313-2315
[12] YANG Yang, WANG Cang-Long, DUAN Wen-Shan**, CHEN Jian-Min . Resonance and Rectification in a Two-Dimensional Frenkel–Kontorova Model with Triangular Symmetry[J]. Chin. Phys. Lett., 2011, 28(3): 2313-2315
[13] WANG Shao-Hua, YANG Ming**, WU Da-Jin . Diffusion of Active Particles Subject both to Additive and Multiplicative Noises[J]. Chin. Phys. Lett., 2011, 28(2): 2313-2315
[14] HE Zheng-You, ZHOU Yu-Rong** . Vibrational and Stochastic Resonance in the FitzHugh–Nagumo Neural Model with Multiplicative and Additive Noise[J]. Chin. Phys. Lett., 2011, 28(11): 2313-2315
[15] TANG Jun**, QU Li-Cheng, LUO Jin-Ming . Robustness of Diversity Induced Synchronization Transition in a Delayed Small-World Neuronal Network[J]. Chin. Phys. Lett., 2011, 28(10): 2313-2315
Full text