Chin. Phys. Lett.  2005, Vol. 22 Issue (11): 2877-2880    DOI:
Original Articles |
Multi-Scale Analysis of Energy Transfer in Scalar Turbulence
FANG Le;CUI Gui-Xiang;XU Chun-Xiao;ZHANG Zhao-Shun
Department of Engineering Mechanics, Tsinghua University, Beijing 100084
Cite this article:   
FANG Le, CUI Gui-Xiang, XU Chun-Xiao et al  2005 Chin. Phys. Lett. 22 2877-2880
Download: PDF(217KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The energy transfer of homogeneous scalar turbulence is studied numerically by triad interaction in spectral space. The different transfer properties between turbulent kinetic energy and turbulent scalar energy reveal that non-local energy transfer exists as important as the local energy transfer in scalar turbulence. The non-local energy transfer of scalar turbulence results from non-local triad interaction. As a result there will be longer inertia-convective range in scalar turbulence than the inertial subrange in turbulent kinetic transfer at Reλ= Peλ. The non-local transfer of turbulent scalar energy generates more energy transfer into dissipation range. The discovery of non-local transfer of turbulent scalar energy indicates that this phenomenon should be concerned carefully in numerical scheme and subgrid modelling of direct numerical simulation or large eddy simulation scalar turbulence.
Keywords: 47.27.-i      47.27.Qb     
Published: 01 November 2005
PACS:  47.27.-i (Turbulent flows)  
  47.27.Qb  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2005/V22/I11/02877
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FANG Le
CUI Gui-Xiang
XU Chun-Xiao
ZHANG Zhao-Shun
Related articles from Frontiers Journals
[1] ZHANG Hui-Qiang, LU Hao, WANG Bing**, WANG Xi-Lin . Experimental Investigation of Flow Drag and Turbulence Intensity of a Channel Flow with Rough Walls[J]. Chin. Phys. Lett., 2011, 28(8): 2877-2880
[2] LUO Jian-Ping, LU Zhi-Ming, USHIJIMA Tatsuo, KITOH Osami, LIU Yu-Lu,. Lagrangian Structure Function's Scaling Exponents in Turbulent Channel Flow[J]. Chin. Phys. Lett., 2010, 27(2): 2877-2880
[3] MI Jian-Chun, R. A. Antonia. Key Factors in Determining the Magnitude of Vorticity in Turbulent Plane Wakes[J]. Chin. Phys. Lett., 2010, 27(2): 2877-2880
[4] JIANG Mi, MA Ping. Vortex Turbulence due to the Interplay of Filament Tension and Rotational Anisotropy[J]. Chin. Phys. Lett., 2009, 26(7): 2877-2880
[5] CAO Yu-Hui, PEI Jie, CHEN Jun, SHE Zhen-Su,. Compressibility Effects in Turbulent Boundary Layers[J]. Chin. Phys. Lett., 2008, 25(9): 2877-2880
[6] FENG Shi-De, DONG Ping, ZHONG Lin-Hao. A Conceptual Model of Somali Jet Based on the Biot--Savart Law[J]. Chin. Phys. Lett., 2008, 25(12): 2877-2880
[7] TENG Hong-Hui, JIANG Zong-Lin. Analytical Interaction of the Acoustic Wave and Turbulent Flame[J]. Chin. Phys. Lett., 2007, 24(2): 2877-2880
[8] Feng-Chen LI, Yasuo KAWAGUCHI, Takehiko SEGAWA, Koichi HISHIDA. Stereoscopic Particle Image Velocimetry Investigation of Three-Dimensional Characteristics of Vortex Structure in a Turbulent Channel Flow[J]. Chin. Phys. Lett., 2005, 22(3): 2877-2880
[9] HU Kai-Heng, CHEN Kai. Relative Scaling Exponents and Intermittency in Compressible Turbulent Channel Flows[J]. Chin. Phys. Lett., 2005, 22(12): 2877-2880
[10] ZHENG Lian-Cun, ZHANG Xin-Xin, HE Ji-Cheng. Transportation Characteristics for a Class of Generalized N-Diffusion Equation with Convection[J]. Chin. Phys. Lett., 2004, 21(6): 2877-2880
[11] HE Kai-Fen. Hopf Bifurcation in a Nonlinear Wave System[J]. Chin. Phys. Lett., 2004, 21(3): 2877-2880
[12] FU Song, LI Qi-Bing, WANG Ming-Hao. Depicting Vortex Stretching and Vortex Relaxing Mechanisms [J]. Chin. Phys. Lett., 2003, 20(12): 2877-2880
[13] ZHANG Hai-Yun, HE Kai-Fen. Charged Particle Motion in Temporal Chaotic and Spatiotemporal Chaotic Fields[J]. Chin. Phys. Lett., 2002, 19(4): 2877-2880
[14] HE Kai-Fen. Time-Averaged Behaviour at the Critical Parameter Point of Transition to Spatiotemporal Chaos [J]. Chin. Phys. Lett., 2001, 18(9): 2877-2880
[15] HE Kai-Fen, ZHANG Hai-Yun. Transition of One Mode-Phase at the Crisis and Onset of Spatiotemporal Chaos [J]. Chin. Phys. Lett., 2001, 18(2): 2877-2880
Viewed
Full text


Abstract