Chin. Phys. Lett.  2004, Vol. 21 Issue (2): 356-359    DOI:
Original Articles |
Effects of Liquid Second Viscosity in High-Amplitude Sonoluminescence
Ahmad Moshaii1,3;Rasool Sadighi-Bonabi1,2;Mohammad Taeibi-Rahni3;Mehdi Daemi1
1Department of Physics, Sharif University of Technology, PO Box 11365-9161, Tehran, I. R. Iran 2Bonab Research Center, PO Box 56515-196, Bonab, Azarbayejan Province, I. R. Iran 3(IPM) Institute for Studies in Theoretical Physics and Mathematics, PO Box 19395-5531, Tehran, I. R. Iran 3Department of Aerospace Engineering, Sharif University of Technology, PO Box 11365-9161, Tehran, I. R. Iran
Cite this article:   
Ahmad Moshaii, Rasool Sadighi-Bonabi, Mohammad Taeibi-Rahni et al  2004 Chin. Phys. Lett. 21 356-359
Download: PDF(508KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The well-known Rayleigh-Plesset (RP) equation is the base of nearly all hydrodynamical descriptions of sonoluminescence (SL) phenomenon. A major deficiency of this equation is that it accounts for viscosity of an incompressible liquid and compressibility, separately. By removing this approximation, we have modified the RP equation considering effects of liquid second viscosity. This modification exhibits its importance at the end of an intense collapse, so that the new model predicts appearance of a new picosecond bouncing during high amplitude sonoluminescence radiation. This new bouncing produces very sharp (sub-picosecond) peaks on the top of sonoluminescence pulse. These new behaviors are more remarkable for higher driving pressures and lower ambient temperatures.
Keywords: 47.55.Bx      43.25.Yw      43.25.+y      78.60.Mq     
Published: 01 February 2004
PACS:  47.55.Bx  
  43.25.Yw (Nonlinear acoustics of bubbly liquids)  
  43.25.+y (Nonlinear acoustics)  
  78.60.Mq (Sonoluminescence, triboluminescence)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2004/V21/I2/0356
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ahmad Moshaii
Rasool Sadighi-Bonabi
Mohammad Taeibi-Rahni
Mehdi Daemi
Related articles from Frontiers Journals
[1] CHEN Qiong, YANG Xian-Qing**, WANG Zhen-Hui, ZHAO Xin-Yin. Two Kinds of Localized Oscillating Modes in Strongly Nonlinear Hertzian Chains with Defect[J]. Chin. Phys. Lett., 2012, 29(1): 356-359
[2] CHEN Jian-Jun, ZHANG De, MAO Yi-Wei, CHENG Jian-Chun . Nondestructive Characterization of Quantitative Bonding Strength at a Bonded Solid-Solid Interface[J]. Chin. Phys. Lett., 2011, 28(8): 356-359
[3] Sergej Aman**, Juergen Tomas, A. Streletskii . Fast Modification of Microdischarge Emission Bands by Fracture of Sugar[J]. Chin. Phys. Lett., 2011, 28(8): 356-359
[4] DENG Ming-Xi**, XIANG Yan-Xun, LIU Liang-Bing . Time-Domain Second-Harmonic Generation of Primary Lamb-Wave Propagation in an Elastic Plate[J]. Chin. Phys. Lett., 2011, 28(7): 356-359
[5] QIU Yuan-Yuan, ZHENG Hai-Rong, ZHANG Dong** . Hysteretic Nonlinearity of Sub-harmonic Emission from Ultrasound Contrast Agent Microbubbles[J]. Chin. Phys. Lett., 2011, 28(4): 356-359
[6] LIU Zhen-Bo, FAN Ting-Bo, GUO Xia-Sheng, ZHANG Dong. Effect of Tissue Inhomogeneity on Nonlinear Propagation of Focused Ultrasound[J]. Chin. Phys. Lett., 2010, 27(9): 356-359
[7] FAN Li, ZHANG Shu-Yi, ZHANG Hui. Influence of the Nonlinearity of Loudspeakers on the Performance of Thermoacoustic Refrigerators Driven by Current and Voltage[J]. Chin. Phys. Lett., 2010, 27(7): 356-359
[8] HUANG Bei, ZHENG Hai-Rong, ZHANG Dong. Asymmetric Oscillation and Acoustic Response from an Encapsulated Microbubble Bound within a Small Vessel[J]. Chin. Phys. Lett., 2010, 27(6): 356-359
[9] XIANG Yan-Xun, XUAN Fu-Zhen, DENG Ming-Xi. Evaluation of Thermal Degradation Induced Material Damage Using Nonlinear Lamb Waves[J]. Chin. Phys. Lett., 2010, 27(1): 356-359
[10] Chung-Seok KIM, Cliff J. LISSENDEN. Precipitate Contribution to the Acoustic Nonlinearity in Nickel-Based Superalloy[J]. Chin. Phys. Lett., 2009, 26(8): 356-359
[11] FAN Ting-Bo, LIU Zhen-Bo, ZHANG Zhe, ZHANG Dong, GONG Xiu-Fen. Modeling of Nonlinear Propagation in Multi-layer Biological Tissues for Strong Focused Ultrasound[J]. Chin. Phys. Lett., 2009, 26(8): 356-359
[12] AN Zhi-Wu, WANG Xiao-Min, LI Ming-Xuan, DENG Ming-Xi, MAO Jie. Theoretical Development of Nonlinear Spring Models for the Second Harmonics on an Interface between Two Solids[J]. Chin. Phys. Lett., 2009, 26(11): 356-359
[13] HU Yi, MIAO Guo-Qing, WEI Rong-Jue. Water Surface Wave in a Trough with Periodical Topographical Bottom under Vertical Vibration[J]. Chin. Phys. Lett., 2009, 26(11): 356-359
[14] CHEN Jian-Jun, ZHANG De, MAO Yi-Wei, CHENG Jian-Chun. A Unique Method to Describe the Bonding Strength in a Bonded Solid-S-olid Interface by Contact Acoustic Nonlinearity[J]. Chin. Phys. Lett., 2009, 26(1): 356-359
[15] TU Juan, GUAN J. F., MATULA T. J., Crum L. A., WEI Rongjue. Real-Time Measurements and Modelling on Dynamic Behaviour of SonoVue Bubbles Based on Light Scattering Technology[J]. Chin. Phys. Lett., 2008, 25(1): 356-359
Viewed
Full text


Abstract