Chin. Phys. Lett.  2004, Vol. 21 Issue (12): 2388-2391    DOI:
Original Articles |
Single-Walled Carbon Nanotubes Acting as Controllable Transport Channels
HUANG Bo-Da1;XIA Yue-Yuan2;ZHAO Ming-Wen2;LI Feng2;LIU Xiang-Dong2;JI Yan-Ju2;SONG Chen2;TAN Zhen-Yu3;LIU Hui4
1School of Information Science and Engineering, Shandong University, Jinan Shandong 250100 2School of Physics and Microelectronics, Shandong University, Jinan 250100 3School of Electrical Engineering, Shandong University, Jinan 250100 4High Performance Computing Centre, Shandong University, Jinan 250100
Cite this article:   
HUANG Bo-Da, XIA Yue-Yuan, ZHAO Ming-Wen et al  2004 Chin. Phys. Lett. 21 2388-2391
Download: PDF(454KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The motion and equilibrium distribution of water molecules adsorbed inside neutral and negatively charged single-walled carbon nanotubes (SWNTs) have been studied using molecular dynamics simulations (MDSs) at room temperature based on CHARMM (Chemistry at HARvard Molecular Mechanics) potential parameters. We find that water molecules have a conspicuous electropism phenomenon and regular tubule patterns inside and outside the charged tube wall. The analyses of the motion behaviour of water molecules in the radial and axial directions show that by charging the SWNT, the adsorption efficiency is greatly enhanced, and the electric field produced by the charged SWNTs prevents water molecules from flowing out of the nanotube. However, water molecules can travel through the neutral SWNT in a fluctuating manner. This indicates that by electrically charging and uncharging the SWNTs, one can control the adsorption and transport behaviour of polar molecules in SWNTs for using as a stable storage medium or long transport channels. The transport velocity can be tailored by changing the charge on the SWNTs, which may have a further application as modulatable transport channels.

Keywords: 31.15.Qg      78.67.Ch      68.43.Hn     
Published: 01 December 2004
PACS:  31.15.Qg  
  78.67.Ch (Nanotubes)  
  68.43.Hn (Structure of assemblies of adsorbates (two-and three-dimensional clustering))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2004/V21/I12/02388
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HUANG Bo-Da
XIA Yue-Yuan
ZHAO Ming-Wen
LI Feng
LIU Xiang-Dong
JI Yan-Ju
SONG Chen
TAN Zhen-Yu
LIU Hui
Related articles from Frontiers Journals
[1] CUI Yin-Fang, WANG Cong, WU Su-Juan, LIU Yu, WANG Tian-Min. Preparation and Photocatalytic Activity of ZnO/Fe2O3 Nanorod Arrays and ZnO/NiO Nanotube Arrays[J]. Chin. Phys. Lett., 2012, 29(3): 2388-2391
[2] LIU Xiao-Qing, KONG Hui-Hui, CHEN Xiu, DU Xin-Li, CHEN Feng, LIU Nian-Hua, WANG Li,. Large-Area Self-Assembly of Rubrene on Au(111) Surface[J]. Chin. Phys. Lett., 2010, 27(5): 2388-2391
[3] LI Qing, Shiro Yamazaki, Toyoaki Eguchi, MA Xu-Cun, JIA Jin-Feng, XUE Qi-Kun, Yukio Hasegawa. Self-Assembly of TBrPP-Co Molecules on an Ag/Si(111) Surface Studied by Scanning Tunneling Microscopy[J]. Chin. Phys. Lett., 2010, 27(2): 2388-2391
[4] SEETAWAN Tosawat, WONG-UD-DEE Gjindara, THANACHAYANONT Chanchana, AMORNKITBUMRUNG Vittaya. Molecular Dynamics Simulation of Strontium Titanate[J]. Chin. Phys. Lett., 2010, 27(2): 2388-2391
[5] ILIC D. I., SATARIC M. V., RALEVIC N.. Microtubule as a Transmission Line for Ionic Currents[J]. Chin. Phys. Lett., 2009, 26(7): 2388-2391
[6] YU Gui-Li, JIA Yong-Lei. Exciton States and Linear Optical Spectra of Semiconducting Carbon Nanotubes under Uniaxial Strain[J]. Chin. Phys. Lett., 2009, 26(3): 2388-2391
[7] ZOU Yu, HUAI Xiu-Lan, LIANG Shi-Qiang. Molecular Dynamics Simulation of Bubble Nucleation in Explosive Boiling[J]. Chin. Phys. Lett., 2009, 26(1): 2388-2391
[8] GONG Xiu-Fang, WANG Yin, NING Xi-Jing. Growth of C30 and C31 Clusters: Structures, Energetics and Dynamics[J]. Chin. Phys. Lett., 2008, 25(2): 2388-2391
[9] LI Feng, WANG Ting-Ying, ZHANG Gui-Zhong, XIANG Wang-Hua, W. T. Hill III. Double-Exponentially Decayed Photoionization in CREI Effect: Numerical Experiment on 3D H2+[J]. Chin. Phys. Lett., 2008, 25(2): 2388-2391
[10] ZENG Zhao-Yi, CHEN Xiang-Rong, , ZHU Jun, HU Cui-E,. Phase Transition and Melting Curves of Calcium Fluoride via Molecular Dynamics Simulations[J]. Chin. Phys. Lett., 2008, 25(1): 2388-2391
[11] ZHANG Chun-Fang, WEI He-Lin, WANG Jian, LIU Zu-Li. Gold Nanobelt Reorientation by Molecular Dynamics Simulation[J]. Chin. Phys. Lett., 2007, 24(8): 2388-2391
[12] OU Shu-Ching, WU Guo-Zhen. Correlation between Chaotic Dynamics and Level Spacings: the Lyapunov and Dixon Dip Approaches to Highly Excited Vibration of Deuterium Cyanide[J]. Chin. Phys. Lett., 2007, 24(7): 2388-2391
[13] S. ZDRAVKOVIC, M. V. SATARIC. Impact of Viscosity on DNA Dynamics[J]. Chin. Phys. Lett., 2007, 24(5): 2388-2391
[14] ZHANG Zheng-Hua, LIU Han-Mao, XIONG Yuan-Qin, XU Wei-Jian, TANG Yuan-Hong. UV--vis Absorption and PL Properties of Self-Assembled Silicon Nanotubes[J]. Chin. Phys. Lett., 2007, 24(2): 2388-2391
[15] BAI Yu-Lin, CHEN Xiang-Rong, ZHOU Xiao-Lin, CHENG Xiao-Hong, YANG Xiang-Dong,. First-Principles Calculations for Structures and Melting Temperature of Si6 Clusters[J]. Chin. Phys. Lett., 2006, 23(8): 2388-2391
Viewed
Full text


Abstract