Chin. Phys. Lett.  2004, Vol. 21 Issue (11): 2171-2174    DOI:
Original Articles |
Surface-Induced Melting of Metal Nanoclusters
YANG Quan-Wen1;ZHU Ru-Zeng1;WEI Jiu-An1;WEN Yu-Hua2
1State Key Laboratory for Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080 2Department of Physics, Xiamen University, Xiamen 351005
Cite this article:   
YANG Quan-Wen, ZHU Ru-Zeng, WEI Jiu-An et al  2004 Chin. Phys. Lett. 21 2171-2174
Download: PDF(521KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the size effect on melting of metal nanoclusters by molecular dynamics simulation and thermodynamic theory based on Kofman’s melt model. By the minimization of the free energy of metal nanoclusters with respect to the thickness of the surface liquid layer, it has been found that the nanoclusters of the same metal have the same premelting temperature Tpre=T0-T0svlvsl)/(ρLξ) (T0 is the melting point of bulk metal, γsv the solid--vapour interfacial free energy, γlv the liquid--vapour interfacial free energy, γsl the solid--liquid interfacial free energy, ρ the density of metal, L the latent heat of bulk metal, and ξ the characteristic length of surface-interface interaction) to be independent of the size of nanoclusters, so that the characteristic length ξ of a metal can be obtained easily by Tpre, which can be obtained by experiments or molecular dynamics (MD) simulations. The premelting temperature Tpre of Cu is obtained by MD simulations, then ξ is obtained. The melting point Tcm is further predicted by free energy analysis and is in good agreement with the result of our MD simulations. We also predict the maximum premelting-liquid width of Cu nanoclusters with various sizes and the critical size, below which there is no premelting.
Keywords: 36.40.Ei      31.15.Qg     
Published: 01 November 2004
PACS:  36.40.Ei (Phase transitions in clusters)  
  31.15.Qg  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2004/V21/I11/02171
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YANG Quan-Wen
ZHU Ru-Zeng
WEI Jiu-An
WEN Yu-Hua
Related articles from Frontiers Journals
[1] SEETAWAN Tosawat, WONG-UD-DEE Gjindara, THANACHAYANONT Chanchana, AMORNKITBUMRUNG Vittaya. Molecular Dynamics Simulation of Strontium Titanate[J]. Chin. Phys. Lett., 2010, 27(2): 2171-2174
[2] ILIC D. I., SATARIC M. V., RALEVIC N.. Microtubule as a Transmission Line for Ionic Currents[J]. Chin. Phys. Lett., 2009, 26(7): 2171-2174
[3] LI Guo-Jian, WANG Qiang, LIU Tie, LI Dong-Gang, LU Xiao, HE Ji-Cheng. Molecular Dynamics Simulation of Icosahedral Transformations in Solid Cu-Co Clusters[J]. Chin. Phys. Lett., 2009, 26(3): 2171-2174
[4] ZOU Yu, HUAI Xiu-Lan, LIANG Shi-Qiang. Molecular Dynamics Simulation of Bubble Nucleation in Explosive Boiling[J]. Chin. Phys. Lett., 2009, 26(1): 2171-2174
[5] GONG Xiu-Fang, WANG Yin, NING Xi-Jing. Growth of C30 and C31 Clusters: Structures, Energetics and Dynamics[J]. Chin. Phys. Lett., 2008, 25(2): 2171-2174
[6] LI Feng, WANG Ting-Ying, ZHANG Gui-Zhong, XIANG Wang-Hua, W. T. Hill III. Double-Exponentially Decayed Photoionization in CREI Effect: Numerical Experiment on 3D H2+[J]. Chin. Phys. Lett., 2008, 25(2): 2171-2174
[7] ZENG Zhao-Yi, CHEN Xiang-Rong, , ZHU Jun, HU Cui-E,. Phase Transition and Melting Curves of Calcium Fluoride via Molecular Dynamics Simulations[J]. Chin. Phys. Lett., 2008, 25(1): 2171-2174
[8] ZHANG Chun-Fang, WEI He-Lin, WANG Jian, LIU Zu-Li. Gold Nanobelt Reorientation by Molecular Dynamics Simulation[J]. Chin. Phys. Lett., 2007, 24(8): 2171-2174
[9] OU Shu-Ching, WU Guo-Zhen. Correlation between Chaotic Dynamics and Level Spacings: the Lyapunov and Dixon Dip Approaches to Highly Excited Vibration of Deuterium Cyanide[J]. Chin. Phys. Lett., 2007, 24(7): 2171-2174
[10] ZHANG Wei, ZHANG Feng-Shou, ZHU Zhi-Yuan. Melting Transition of Small Aluminium Clusters Al11-20[J]. Chin. Phys. Lett., 2007, 24(7): 2171-2174
[11] S. ZDRAVKOVIC, M. V. SATARIC. Impact of Viscosity on DNA Dynamics[J]. Chin. Phys. Lett., 2007, 24(5): 2171-2174
[12] BAI Yu-Lin, CHEN Xiang-Rong, ZHOU Xiao-Lin, CHENG Xiao-Hong, YANG Xiang-Dong,. First-Principles Calculations for Structures and Melting Temperature of Si6 Clusters[J]. Chin. Phys. Lett., 2006, 23(8): 2171-2174
[13] ZHANG Zhe, ZHANG Gui-Zhong, XIANG Wang-Hua, W. T. Hill III. Absence of Charge-Resonance-Enhanced Ionization in Attosecond Pulse Photoionization: Numerical Result on One-Dimensional H2+[J]. Chin. Phys. Lett., 2006, 23(6): 2171-2174
[14] CAO Heng, YUAN Song-Liu, SHANG Jing-Lin, JIANG Xiu-Lin, LI Pai, WANG Yong-Qiang, LIU Li. Monte Carlo Study of Griffiths Phase in Randomly Site Diluted Ising Magnetic System[J]. Chin. Phys. Lett., 2006, 23(5): 2171-2174
[15] ZHANG Zhe, ZHANG Zhong-Qing, ZHANG Gui-Zhong, XIANG Wang-Hua, W. T. Hill III. Imaging Internuclear Separation of H2+ in Configuration Space: Reduced Dimensionality Model[J]. Chin. Phys. Lett., 2006, 23(3): 2171-2174
Viewed
Full text


Abstract