Chin. Phys. Lett.  2003, Vol. 20 Issue (9): 1637-1640    DOI:
Original Articles |
Chemical Sensors Based on Piezoresistive Cantilever Array
YU Xiao-Mei;ZHANG Da-Cheng;WANG Cong-Shun;DU Xian-Feng;WANG Xiao-Bao;RUAN Yong
Institute of Microelectronics, Peking University, Beijing 100871
Cite this article:   
YU Xiao-Mei, ZHANG Da-Cheng, WANG Cong-Shun et al  2003 Chin. Phys. Lett. 20 1637-1640
Download: PDF(382KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract U-shaped and rectangle piezoresistive cantilever arrays have been designed with the analysing results of stress, noise and sensitivity of the cantilevers. Based on silicon micromachining technology, the piezoresistive cantilevers were fabricated by using polysilicon as the piezoresistive materials. With the measurement results of noise and sensitivity, the Hooge factor is calculated to be 3 x 10-3, the gauge factor is 27, and the minimum detectable deflection of piezoresistive cantilevers are calculated to be 1.0 nm for rectangle cantilever and 0.5 nm for the U-shaped cantilever at a 6 V bias voltage and a 1000 Hz measurement bandwidth. Using polymer-coated cantilevers as individual sensors, their responses to water vapor and ammonia were tested by measuring their output voltage signals. The measured results show that the sensor sensitivity to ammonia can reach a few ppm and the sensor responses are quick.
Keywords: 85.85.+j      07.07.Df      72.20.Fr      46.70.De     
Published: 01 September 2003
PACS:  85.85.+j (Micro- and nano-electromechanical systems (MEMS/NEMS) and devices)  
  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
  72.20.Fr (Low-field transport and mobility; piezoresistance)  
  46.70.De (Beams, plates, and shells)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2003/V20/I9/01637
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YU Xiao-Mei
ZHANG Da-Cheng
WANG Cong-Shun
DU Xian-Feng
WANG Xiao-Bao
RUAN Yong
Related articles from Frontiers Journals
[1] ZHAO An-Di,ZHENG Yong-Jun,YU Xiao-Mei**. Imaging and Characteristics of a Bimaterial Microcantilever FPA Fabricated using Bulk Silicon Processes[J]. Chin. Phys. Lett., 2012, 29(5): 1637-1640
[2] ZHANG Guo-An, ZHANG Dong-Wei, HE Jin, SU Yan-Mei, WANG Cheng, CHEN Qin, LIANG Hai-Lang, YE Yun. A Single-Transistor Active Pixel CMOS Image Sensor Architecture[J]. Chin. Phys. Lett., 2012, 29(3): 1637-1640
[3] QIAO Ji-Ping, ZHU Zi-Peng, YAN Xiao-Yan, QIN Jian-Min. Fabrication and Performance of Micro-sensors for Methane Detection Based on In-Pd-Co-SnO2 Composite Nanofibers[J]. Chin. Phys. Lett., 2012, 29(2): 1637-1640
[4] YUE Xue-Jun, HONG Tian-Sheng**, XU Xing, LI Zhen . High-Performance Humidity Sensors Based on Double-Layer ZnO-TiO2 Nanofibers via Electrospinning[J]. Chin. Phys. Lett., 2011, 28(9): 1637-1640
[5] WEI Ang, WANG Zhao, PAN Liu-Hua, LI Wei-Wei, XIONG Li, DONG Xiao-Chen**, HUANG Wei** . Room-Temperature NH Gas Sensor Based on Hydrothermally Grown ZnO Nanorods[J]. Chin. Phys. Lett., 2011, 28(8): 1637-1640
[6] GAO An-Ran, LIU Xiang, GAO Xiu-Li, LI Tie**, GAO Hua-Min, ZHOU Ping, WANG Yue-Lin . A Low Voltage Driven Digital-Droplet-Transporting-Chip by Electrostatic Force[J]. Chin. Phys. Lett., 2011, 28(8): 1637-1640
[7] XU Lei, WANG Rui**, XIAO Qi, ZHANG Dan, LIU Yong . Micro Humidity Sensor with High Sensitivity and Quick Response/Recovery Based on ZnO/TiO2 Composite Nanofibers[J]. Chin. Phys. Lett., 2011, 28(7): 1637-1640
[8] LI Yi-Gui**, SUN Jian, YANG Chun-Sheng, LIU Jing-Quan, SUGIYAMA Susumu, TANAKA Katsuhiko . Fabrication and Characterization of a Lead Zirconate Titanate Micro Energy Harvester Based on Eutectic Bonding[J]. Chin. Phys. Lett., 2011, 28(6): 1637-1640
[9] XU Lei, WANG Rui**, LIU Yong, DONG Liang . Influence of Fabricating Process on Gas Sensing Properties of ZnO Nanofiber-Based Sensors[J]. Chin. Phys. Lett., 2011, 28(4): 1637-1640
[10] WANG Cheng, FAN Li, ZHANG Shu-Yi**, YANG Yue-Tao, ZHOU Ding-Mao, SHUI Xiu-Ji . Highly Sensitive Rayleigh Wave Hydrogen Sensors with WO3 Sensing Layers at Room Temperature[J]. Chin. Phys. Lett., 2011, 28(11): 1637-1640
[11] WANG Yu, GUO Kai, PEI Wei-Hua**, GUI Qiang, LI Xiao-Qian, CHEN Hong-Da, YANG Jian-Hong . Fabrication of Dry Electrode for Recording Bio-potentials[J]. Chin. Phys. Lett., 2011, 28(1): 1637-1640
[12] HU Gui-Zhou, YANG Ling, YANG Li-Yuan, QUAN Si, JIANG Shou-Gao, MA Ji-Gang, MA Xiao-Hua, HAO Yue. Characteristics in AlN/AlGaN/GaN Multilayer-Structured High-Electron-Mobility Transistors[J]. Chin. Phys. Lett., 2010, 27(8): 1637-1640
[13] TAN Zhen-Xin, XUE Chen-Yang, HOU Ting-Ting, LIU Jun, ZHANG Bin-Zhen, ZHANG Wen-Dong. Temperature Effects of Piezoresistance Coefficient[J]. Chin. Phys. Lett., 2010, 27(8): 1637-1640
[14] LIU Li, KOU Li-Ying, ZHONG Zhi-Cheng, WANG Lian-Yuan, LIU Li-Fang, LI Wei. Preparation and Humidity Sensing Properties of KCl/MCM-41 Composite[J]. Chin. Phys. Lett., 2010, 27(5): 1637-1640
[15] GUAN Zhi-Qiang, LUO Gang, MONTELIUS Lars, XU Hong-Xing,. Electromechanical Behavior of Interdigitated SiO2 Cantilever Arrays[J]. Chin. Phys. Lett., 2010, 27(2): 1637-1640
Viewed
Full text


Abstract