Chin. Phys. Lett.  2002, Vol. 19 Issue (8): 1203-1206    DOI:
Original Articles |
Anomalous Temperature Dependence of Photoluminescence in GaInNAs/GaAs Multiple Quantum Wells
LIANG Xiao-Gan1;JIANG De-Sheng1;BIAN Li-Feng1;PAN Zhong2;LI Lian-He2;WU Rong-Han2
1National Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 2State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083
Cite this article:   
LIANG Xiao-Gan, JIANG De-Sheng, BIAN Li-Feng et al  2002 Chin. Phys. Lett. 19 1203-1206
Download: PDF(503KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Photoluminescence (PL) spectra of GaInNAs/GaAs multiple quantum wells (MQWs) grown on a GaAs substrate by molecular beam epitaxy are measured in a range of temperature and excitation power densities. The energy position of dominant PL peak shows an anomalous S-shape temperature dependence instead of the Varshni relation. By the careful inspection, especially for the PL under lower excitation power density, two near band-edge peaks are well identified. They are assigned to carriers localized in nitrogen-induced bound states and interband excitonic recombinations respectively. It is suggested that the temperature-induced switch of such two luminescence peaks in relative intensity causes a significant mechanism responsible for the S-shape shift observed in GaInNAs. A quantitative model based on the thermal depopulation of carriers is used to explain the temperature dependence of the PL peak related to N-induced bound states.
Keywords: 81.15.Hi      75.55.Eq      78.55.m      68.65.+q     
Published: 01 August 2002
PACS:  81.15.Hi (Molecular, atomic, ion, and chemical beam epitaxy)  
  75.55.Eq  
  78.55.m  
  68.65.+q  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2002/V19/I8/01203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIANG Xiao-Gan
JIANG De-Sheng
BIAN Li-Feng
PAN Zhong
LI Lian-He
WU Rong-Han
Related articles from Frontiers Journals
[1] LIU Shao-Qing, HAN Qin, ZHU Bin, YANG Xiao-Hong, NI Hai-Qiao, HE Ji-Fang, WANG Win, NIU Zhi-Chuan. Tunable Metamorphic Resonant Cavity Enhanced InGaAs Photodetectors Grown on GaAs Substrates[J]. Chin. Phys. Lett., 2012, 29(3): 1203-1206
[2] PAN Jian-Hai, WANG Xin-Qiang**, CHEN Guang, LIU Shi-Tao, FENG Li, XU Fu-Jun, TANG Ning, SHEN Bo*** . Epitaxy of an Al-Droplet-Free AlN Layer with Step-Flow Features by Molecular Beam Epitaxy[J]. Chin. Phys. Lett., 2011, 28(6): 1203-1206
[3] QUAN Wei-Long, LI Hong-Xuan, ZHAO Fei, JI Li, DU Wen, ZHOU Hui-Di, CHEN Jian-Min. Molecular Dynamical Simulations on a-C:H Film Growth from C and H Atomic Flux: Effect of Incident Energy[J]. Chin. Phys. Lett., 2010, 27(8): 1203-1206
[4] QUAN Wei-Long, LI Hong-Xuan, ZHAO Fei, JI Li, DU Wen, ZHOU Hui-Di, CHEN Jian-Min. Molecular Dynamic Simulation on Graphitization and Dehydrogenization of Hydrogenated Carbon Films in Vacuum[J]. Chin. Phys. Lett., 2010, 27(7): 1203-1206
[5] REN Fan, HAO Zhi-Biao, ZHANG Chen, HU Jian-Nan, LUO Yi. High Quality AlN with a Thin Interlayer Grown on a Sapphire Substrate by Plasma-Assisted Molecular Beam Epitaxy[J]. Chin. Phys. Lett., 2010, 27(6): 1203-1206
[6] FU Ying-Shuang, JI Shuai-Hua, ZHANG Tong, CHEN Xi, JIA Jin-Feng, XUE Qi-Kun, MA Xu-Cun . Modifying Quantum Well States of Pb Thin Films via Interface Engineering[J]. Chin. Phys. Lett., 2010, 27(6): 1203-1206
[7] DONG Xi-Jie, HU Yi-Fan, WU Yu-Ying, ZHAO Jun, WAN Zhen-Zhu. A Fractal Model for Effective Thermal Conductivity of Isotropic Porous Silica Low-k Materials[J]. Chin. Phys. Lett., 2010, 27(4): 1203-1206
[8] ZHU Bin, HAN Qin, YANG Xiao-Hong, NI Hai-Qiao, HE Ji-Fang, NIU Zhi-Chuan, WANG Xin, WANG Xiu-Ping, WANG Jie. Metamorphic InGaAs p-i-n Photodetectors with 1.75 μm Cut-Off Wavelength Grown on GaAs[J]. Chin. Phys. Lett., 2010, 27(3): 1203-1206
[9] KONG Ning, LIU Jun-Qi, LI Lu, LIU Feng-Qi, WANG Li-Jun, WANG Zhan-Guo. Strain-Compensated InGaAs/InAlAs Quantum Cascade Detector of 4.5 μm Operating at Room Temperature[J]. Chin. Phys. Lett., 2010, 27(3): 1203-1206
[10] JI Hai-Ming, YANG Tao, CAO Yu-Lian, XU Peng-Fei, GU Yong-Xian, LIU Yu, XIE Liang, WANG Zhan-Guo. A 10Gb/s Directly-Modulated 1.3μm InAs/GaAs Quantum-Dot Laser[J]. Chin. Phys. Lett., 2010, 27(3): 1203-1206
[11] WU Rui, WANG Li-Li, ZHANG Yi, MA Xu-Cun, JIA Jin-Feng, XUE Qi-Kun,. Atomic-Scale Study of Ge-Induced Incommensurate Phases on Si(111)[J]. Chin. Phys. Lett., 2010, 27(2): 1203-1206
[12] LI Zhan-Guo, LIU Guo-Jun**, LI Lin, FENG Ming, LI Mei, LU Peng, ZOU Yong-Gang, LI Lian-He, GAO Xin. Strain-Engineered Low-Density InAs Bilayer Quantum Dots for Single Photon Emission[J]. Chin. Phys. Lett., 2010, 27(12): 1203-1206
[13] KONG Ning**, LIU Jun-Qi, LI Lu, LIU Feng-Qi, WANG Li-Jun, WANG Zhan-Guo, LU Wei . 10.7μm InGaAs/InAlAs Quantum Cascade Detector[J]. Chin. Phys. Lett., 2010, 27(12): 1203-1206
[14] LIU Jun-Qi, CHEN Jian-Yan, LIU Feng-Qi, LI Lu, WANG Li-Jun, WANG Zhan-Guo . Terahertz Quantum Cascade Laser Operating at 2.94THz[J]. Chin. Phys. Lett., 2010, 27(10): 1203-1206
[15] GU Yi, ZHANG Yong-Gang, LI Ai-Zhen, WANG Kai, LI Cheng, LIYao-Yao. Structural and Photoluminescence Properties for Highly Strain-Compensated InGaAs/InAlAs Superlattice[J]. Chin. Phys. Lett., 2009, 26(7): 1203-1206
Viewed
Full text


Abstract