Chin. Phys. Lett.  2001, Vol. 18 Issue (9): 1245-1248    DOI:
Original Articles |
Interlayer Segregation of Cu Atoms in Metal Multilayers
YU Guang-Hua1;LI Ming-Hua1;ZHU Feng-Wu1;JIANG Hong-Wei2;LAI Wu-Yan2;CHAI Chun-Lin3
1Department of Materials Physics, University of Science and Technology Beijing, Beijing 100083 2Institute of Physics, Chinese Academy of Sciences, Beijing 100080 3Institute of Semiconductor, Chinese Academy of Sciences, Beijing 100083
Cite this article:   
YU Guang-Hua, LI Ming-Hua, ZHU Feng-Wu et al  2001 Chin. Phys. Lett. 18 1245-1248
Download: PDF(462KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The experimental results show that the exchange coupling field Hex of NiFe/FeMn for Ta/NiFe/FeMn/Ta multilayers is higher than that for the spin valve multilayers Ta/NiFe/Cu/NiFe/FeMn/Ta. The composition and chemical states at the surface of Ta(12 nm)/NiFe(7 nm), Ta(12 nm)/NiFe(7 nm)/Cu(4 nm) and Ta(12 nm)/NiFe(7 nm)/ Cu(3 nm)/NiFe(5 nm) were studied by using the x-ray photoelectron spectroscopy. The results show that no element from the underlayers floats out or segregate to the surface for Ta(12 nm)/NiFe(7 nm), Ta(12 nm)/NiFe(7 nm)/ Cu(4 nm). However, Cu atoms segregate to the surface of Ta(12 nm)/NiFe(7 nm)/Cu(3 nm)/NiFe(5 nm) multilayers, i.e. to the NiFe/FeMn interface for Ta/NiFe/Cu/NiFe/FeMn/Ta multilayers. The authors believe that the presence of Cu atoms at the interface of NiFe/FeMn is one of the important factors which will cause the exchange coupling field Hex of Ta/NiFe/FeMn/Ta multilayers to be higher than that of Ta/NiFe/Cu/NiFe/FeMn/Ta multilayers.
Keywords: 68.35.Dv      75.30.Ds     
Published: 01 September 2001
PACS:  68.35.Dv (Composition, segregation; defects and impurities)  
  75.30.Ds (Spin waves)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2001/V18/I9/01245
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YU Guang-Hua
LI Ming-Hua
ZHU Feng-Wu
JIANG Hong-Wei
LAI Wu-Yan
CHAI Chun-Lin
Related articles from Frontiers Journals
[1] ZHAO Wei, YU Zhong-Yuan, LIU Yu-Min, FENG Hao, XU Zi-Huan. Research of Equilibrium Composition Map in Conic Quantum Dots[J]. Chin. Phys. Lett., 2010, 27(5): 1245-1248
[2] LU Feng, SONG Yun, CHEN Dong-Meng, ZOU Liang-Jian. Orbital Order and Orbital Excitations in Degenerate Itinerant Electron Systems[J]. Chin. Phys. Lett., 2009, 26(9): 1245-1248
[3] DONG Zhan-Hai. 120° Ordered Phase of Triangular Lattice Antiferromagnetic Heisenberg Model with Long Range Couplings[J]. Chin. Phys. Lett., 2009, 26(10): 1245-1248
[4] LIAO Long-Zhong, LIU Zheng-Hui, ZHANG Zhao-Hui. Structural Features of Boron-Doped Si(113) Surfaces Simulated by ab initio Calculations[J]. Chin. Phys. Lett., 2008, 25(6): 1245-1248
[5] WU Bao-Jian, GAO Xiang. Magnetostatic-Wave-Based Magneto-Optic Pulse Compression by Control of Phase Mismatching[J]. Chin. Phys. Lett., 2008, 25(11): 1245-1248
[6] PAN Yang, CHENG Dao-Jian, HUANG Shi-Ping, WANG Wen-Chuan. Melting Behaviour of Core-Shell Structured Ag--Rh Bimetallic Clusters[J]. Chin. Phys. Lett., 2007, 24(6): 1245-1248
[7] WU Dong-Hai, NIU Zhi-Chuan, ZHANG Shi-Yong, NI Hai-Qiao, HE Zhen-Hong, ZHAO Huan, PENG Hong-Ling, YANG Xiao-Hong, HAN Qin, WU Rong-Han. Influence of Growth Parameters of Frequency-Radio Plasma Nitrogen Source on Extending Emission Wavelengths from 1.31μm to 1.55μm GaInNAs/GaAs Quantum Wells Grown by Molecular-Beam Epitaxy[J]. Chin. Phys. Lett., 2006, 23(4): 1245-1248
[8] WU Bao-Jian, QIU Kun. Magneto-Optic Coupling Theory for Guided Optical Waves and Magnetostatic Waves Using an Arbitrarily Tilted Bias Magnetic Field[J]. Chin. Phys. Lett., 2005, 22(9): 1245-1248
[9] LU Xiu-Qin, ZHOU Ping, GUO Ji-Yu, ZHANG Xin, ZHAO Kui, NI Mei-Nan, SUI Li, MEI Jun-Ping, LIU Jian-Cheng. Simultaneous Elastic Recoil Detection Analysis of H and Other Elements in Foils[J]. Chin. Phys. Lett., 2005, 22(11): 1245-1248
[10] HUANG Chen, WANG Huai-Yu, WANG En-Ge. Magnetic Behaviour of Antiferromagnetic Monolayer under an External Field[J]. Chin. Phys. Lett., 2003, 20(9): 1245-1248
[11] GU Ben-Xi, ZHANG Shi-Yuan, DU You-Wei. Magnetic Properties and Low-Field Magnetoresistance of Pr0.7Pb0.3MnO3 Single Crystals[J]. Chin. Phys. Lett., 2001, 18(4): 1245-1248
[12] ZHU Shan-Hua, HUANG Guo-Xiang. Coupled Solitons in Alternating Heisenberg Ferromagnetic Chains with a Small Magnon Band Gap[J]. Chin. Phys. Lett., 2001, 18(10): 1245-1248
[13] WU Bao-jian, LIU Gong-qiang. Noncollinear Interaction of Guided Optical Waves and Magnetostatic Forward Volume Waves Under Inclined Bias Magnetic Field[J]. Chin. Phys. Lett., 1999, 16(4): 1245-1248
[14] SHANG Nai-gui, FANG Rong-chuan, HANG Yin, LI Jin-qiu, HAN Si-jin, SHAO Qing-yi, CUI Jing-biao, XU Cun-yi. Investigation of Diamond Films Deposited on LaAIO3 Single Crystal Substrates by Hot Filament Chemical Vapor Deposition[J]. Chin. Phys. Lett., 1998, 15(2): 1245-1248
[15] DAI Shouyu, YU Chengtao, LI Donghong, FAN Shiyong, JIN Jiucheng, CAI Fengxin. Magnetic Properties of lT-TaS2[J]. Chin. Phys. Lett., 1995, 12(10): 1245-1248
Viewed
Full text


Abstract