Chin. Phys. Lett.  2001, Vol. 18 Issue (2): 178-180    DOI:
Original Articles |
Transition of One Mode-Phase at the Crisis and Onset of Spatiotemporal Chaos
HE Kai-Fen;ZHANG Hai-Yun
Key Laboratory in University for Radiation Beam Technology and Materials Modification,Beijing Normal University, Beijing 100875 Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing 100875 also Beijing Radiation Center, Beijing 100875
Cite this article:   
HE Kai-Fen, ZHANG Hai-Yun 2001 Chin. Phys. Lett. 18 178-180
Download: PDF(626KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In our previous work [Phys. Rev. Lett. 80 (1998) 696] we investigated a crisis-induced transition from temporal chaos to spatiotemporal chaos (STC) due to a collision between the unstable orbit of the carrier saddle steady wave (SSW) and the attractor of its perturbation wave (PW). In this letter, we find that at the crisis one PW mode-phase experiences a state transition. The variations of PW mode-phases are governed by the linear dispersion as well as two competitive effects arising from the system nonlinearity: (1) interaction between the SSW and the PW (SP); (2) self-nonlinearity of the PW (PP). With the increasing importance of system nonlinearity we find that before the crisis for all PW modes the SP effects dominate and the mode-phases vibrate chaotically; while after the crisis for one PW mode the PP effect surpasses that of SP, in which case the phase transits to a state of combination of chaotic whirling and vibrating, which is different from the case of weak nonlinearity. In the meantime, the PW partial wave is free from the trapping of its carrier, and can be driven or damped chaotically depending on the phase difference relative to the carrier SSW, causing the STC motion after the crisis.

Keywords: 05.45.+b      03.40.Kf      47.27.-i      52.35.-g     
Published: 01 February 2001
PACS:  05.45.+b  
  03.40.Kf  
  47.27.-i (Turbulent flows)  
  52.35.-g (Waves, oscillations, and instabilities in plasmas and intense beams)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2001/V18/I2/0178
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HE Kai-Fen
ZHANG Hai-Yun
Related articles from Frontiers Journals
[1] ZHANG Hui-Qiang, LU Hao, WANG Bing**, WANG Xi-Lin . Experimental Investigation of Flow Drag and Turbulence Intensity of a Channel Flow with Rough Walls[J]. Chin. Phys. Lett., 2011, 28(8): 178-180
[2] B. Farokhi, ** F. Amini, M. Eghbali . Dust Acoustic Rotation Modes in Magnetized Complex Plasmas[J]. Chin. Phys. Lett., 2011, 28(7): 178-180
[3] S. Ali Shan, **, A. Mushtaq . Role of Jeans Instability in Multi-Component Quantum Plasmas in the Presence of Fermi Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 178-180
[4] Juan A. Lazzús** . Predicting Natural and Chaotic Time Series with a Swarm-Optimized Neural Network[J]. Chin. Phys. Lett., 2011, 28(11): 178-180
[5] LUO Jian-Ping, LU Zhi-Ming, USHIJIMA Tatsuo, KITOH Osami, LIU Yu-Lu,. Lagrangian Structure Function's Scaling Exponents in Turbulent Channel Flow[J]. Chin. Phys. Lett., 2010, 27(2): 178-180
[6] SUN Xiao-Xia, WANG Chun-Hua, GAO Feng. Lattice Waves in Two-Dimensional Hexagonal Quantum Plasma Crystals[J]. Chin. Phys. Lett., 2010, 27(2): 178-180
[7] MI Jian-Chun, R. A. Antonia. Key Factors in Determining the Magnitude of Vorticity in Turbulent Plane Wakes[J]. Chin. Phys. Lett., 2010, 27(2): 178-180
[8] JIANG Mi, MA Ping. Vortex Turbulence due to the Interplay of Filament Tension and Rotational Anisotropy[J]. Chin. Phys. Lett., 2009, 26(7): 178-180
[9] MIAO Qing-Ying, FANG Jian-An, TANG Yang, DONG Ai-Hua. Increasing-order Projective Synchronization of Chaotic Systems with Time Delay[J]. Chin. Phys. Lett., 2009, 26(5): 178-180
[10] YUAN Jin-Hui, YU Chong-Xiu, SANG Xin-Zhu, LI Wen-Jing, ZHOU Gui-Yao, LI Shu-Guang, HOU Lan-Tian. Investigation on Guided-Mode Characteristics of Hollow-Core Photonic Crystal Fibre at Near-Infrared Wavelengths[J]. Chin. Phys. Lett., 2009, 26(3): 178-180
[11] BU Yun, WEN Guang-Jun, ZHOU Xiao-Jia, ZHANG Qiang. A Novel Adaptive Predictor for Chaotic Time Series[J]. Chin. Phys. Lett., 2009, 26(10): 178-180
[12] CAO Yu-Hui, PEI Jie, CHEN Jun, SHE Zhen-Su,. Compressibility Effects in Turbulent Boundary Layers[J]. Chin. Phys. Lett., 2008, 25(9): 178-180
[13] ZHOU Yan, LI Lian-Cai, LI Yong-Gao, JIAO Yi-Ming, DENG Zhong-Chao, YI Jiang, LIU Yi, ZHAO Kai-Jun, JI Xiao-Quan, PENG Bei-Bin, YANG Qing-wei, DUAN Xu-Ru, DING Xuan-Tong. Density Fluctuation Measurements Using FIR Interferometer on HL-2A Tokamak[J]. Chin. Phys. Lett., 2008, 25(7): 178-180
[14] ZHOU Zhu-Wen, M. A. LIEBERMAN, Sungjin KIM, JI Shi-Yin, DENG Ming-Sen, SUN Guang-Yu. Low-Frequency Relaxation Oscillations in Capacitive Discharge Processes[J]. Chin. Phys. Lett., 2008, 25(2): 178-180
[15] FENG Shi-De, DONG Ping, ZHONG Lin-Hao. A Conceptual Model of Somali Jet Based on the Biot--Savart Law[J]. Chin. Phys. Lett., 2008, 25(12): 178-180
Viewed
Full text


Abstract