Chin. Phys. Lett.  2000, Vol. 17 Issue (8): 619-620    DOI:
Original Articles |
Enhancement-Mode InAlAs/InGaAs/InP High Electron Mobility Transistor with Strained InAlAs Barrier Layer
AO Jin-Ping1,2;ZENG Qing-Ming1;ZHAO Yong-Lin1;LI Xian-Jie1,2, LIU Wei-Ji1;LIU Shi-Yong2;LIANG Chun-Guang1
1 Hebei Semiconductor Research Institute, Shijiazhuang 050051 2National Integrated Optoelectronics Laboratory, Jilin University, Changchun 130023
Cite this article:   
AO Jin-Ping, ZENG Qing-Ming, ZHAO Yong-Lin et al  2000 Chin. Phys. Lett. 17 619-620
Download: PDF(190KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The relatively low Schottky barrier height on In0.52Al0.48As lattice-matched to InP has hampered the achievement of enhancement-mode InAlAs/InGaAs/InP high electron mobility transistors (E-HEMTs). By introducing lattice-mismatched strained aluminum-rich In0.45Al0.55As as the Schottky contact material to enhance the barrier height, we have developed InP-based InAlAs/InGaAs/InP E-HEMT with threshold voltage of about 150mV. A maximum extrinsic transconductance of 660mS/mm and output conductance of 15 mS/mm are measured for 1 μm-gate-length devices at room temperature. The devices also show excellent radio-frequency performance with cutoff frequency of 50 GHz and maximum oscillation frequency of 54 GHz.
Keywords: 85.30.De      85.30.Tv      73.30.+y     
Published: 01 August 2000
PACS:  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.30.Tv (Field effect devices)  
  73.30.+y (Surface double layers, Schottky barriers, and work functions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2000/V17/I8/0619
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
AO Jin-Ping
ZENG Qing-Ming
ZHAO Yong-Lin
LI Xian-Jie
LIU Wei-Ji
LIU Shi-Yong
LIANG Chun-Guang
Related articles from Frontiers Journals
[1] CHANG Jian-Guang,WU Chun-Bo,JI Xiao-Li**,MA Hao-Wen,YAN Feng,SHI Yi,ZHANG Rong. The Leakage Current Improvement of a Ni-Silicided SiGe/Si Junction Using a Si Cap Layer and the PAI Technique[J]. Chin. Phys. Lett., 2012, 29(5): 619-620
[2] XUE Bai-Qing,CHANG Hu-Dong,SUN Bing,WANG Sheng-Kai,LIU Hong-Gang**. The Impact of HCl Precleaning and Sulfur Passivation on the Al2O3/Ge Interface in Ge Metal-Oxide-Semiconductor Capacitors[J]. Chin. Phys. Lett., 2012, 29(4): 619-620
[3] LU Li,CHANG Hu-Dong,SUN Bing,WANG Hong,XUE Bai-Qing,ZHAO Wei,LIU Hong-Gang**. Solid Phase Reactions of Ni-GaAs Alloys for High Mobility III–V MOSFET Applications[J]. Chin. Phys. Lett., 2012, 29(4): 619-620
[4] BI Zhi-Wei, HAO Yue, FENG Qian, GAO Zhi-Yuan, ZHANG Jin-Cheng, MAO Wei, ZHANG Kai, MA Xiao-Hua, LIU Hong-Xia, YANG Lin-An, MEI Nan, CHANG Yong-Ming. AlGaN/GaN Metal-Insulator-Semiconductor High Electron-Mobility Transistor Using a NbAlO/Al2O3 Laminated Dielectric by Atomic Layer Deposition[J]. Chin. Phys. Lett., 2012, 29(2): 619-620
[5] FENG Wei**. Terahertz Current Oscillation in Wurtzite InN[J]. Chin. Phys. Lett., 2012, 29(1): 619-620
[6] LI Shao-Juan, HE Xin, HAN De-Dong, SUN Lei, WANG Yi, HAN Ru-Qi, CHAN Man-Sun, ZHANG Sheng-Dong, **. Reactive Radiofrequency Sputtering-Deposited Nanocrystalline ZnO Thin-Film Transistors[J]. Chin. Phys. Lett., 2012, 29(1): 619-620
[7] C. K. Sumesh**, K. D. Patel, V. M. Pathak, R. Srivastav . Current Transport in Copper Schottky Contacts to a−Plane/ c−Plane n-Type MoSe2[J]. Chin. Phys. Lett., 2011, 28(8): 619-620
[8] LIU Yan, AO Zhi-Min**, WANG Tao**, WANG Wen-Bo, SHENG Kuang, YU Bin, . Transformation from AA to AB-Stacked Bilayer Graphene on α−SiO2 under an Electric Field[J]. Chin. Phys. Lett., 2011, 28(8): 619-620
[9] CHEN Cong, NING Ting-Yin, WANG Can**, ZHOU Yue-Liang, ZHANG Dong-Xiang, WANG Pei, MING Hai, YANG Guo-Zhen . Rectifying Characteristics and Transport Behavior in a Schottky Junction of CaCu 3Ti4O12 and Pt[J]. Chin. Phys. Lett., 2011, 28(8): 619-620
[10] LIU Sheng-Hou, CAI Yong**, GONG Ru-Min, WANG Jin-Yan, ZENG Chun-Hong, SHI Wen-Hua, FENG Zhi-Hong, WANG Jing-Jing, YIN Jia-Yun, Cheng P. Wen, QIN Hua, ZHANG Bao-Shun . Enhancement-Mode AlGaN/GaN High Electron Mobility Transistors Using a Nano-Channel Array Structure[J]. Chin. Phys. Lett., 2011, 28(7): 619-620
[11] CHEN Liang**, ZHANG Wan-Rong, XIE Hong-Yun, JIN Dong-Yue, DING Chun-Bao, FU Qiang, WANG Ren-Qing, XIAO Ying, ZHAO Xin . Restabilizing Mechanisms after the Onset of Thermal Instability in Bipolar Transistors[J]. Chin. Phys. Lett., 2011, 28(7): 619-620
[12] Kuang-Po HSUEH**, Shih-Tzung SU, Jun ZENG . Numerical Simulation of 4H-SiC Metal Semiconductor Field Transistors[J]. Chin. Phys. Lett., 2011, 28(7): 619-620
[13] Seoung-Hwan Park**, Yong-Tae Moon, Jeong Sik Lee, Ho Ki Kwon, Joong Seo Park, Doyeol Ahn . Optical Gain Analysis of Graded InGaN/GaN Quantum-Well Lasers[J]. Chin. Phys. Lett., 2011, 28(7): 619-620
[14] PAN Feng, QIAN Xian-Rui, HUANG Li-Zhen, WANG Hai-Bo, YAN Dong-Hang** . Significant Improvement of Organic Thin-Film Transistor Mobility Utilizing an Organic Heterojunction Buffer Layer[J]. Chin. Phys. Lett., 2011, 28(7): 619-620
[15] XU Xiao-Bo**, ZHANG He-Ming . An Analytical Avalanche Multiplication Model for Partially Depleted Silicon-on-Insulator SiGe Heterojunction Bipolar Transistors[J]. Chin. Phys. Lett., 2011, 28(7): 619-620
Viewed
Full text


Abstract