Chin. Phys. Lett.  1995, Vol. 12 Issue (8): 501-504    DOI:
Original Articles |
Relationship Between the Formation of Clusters in Electrorheological Fluids and Their Fractal Dimension
WU Feng;TANG Xinlu;YANG Yuegui;WANG Xiaohong
Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026
Cite this article:   
WU Feng, TANG Xinlu, YANG Yuegui et al  1995 Chin. Phys. Lett. 12 501-504
Download: PDF(167KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In this paper, the scaling properties of aggregation of particles in electrorheological fluids (ERF) are analyzed. It is found that the cluster size is related to both the space dimension and its fractal dimension, i. e. the structure of cluster. By analyzing the experimental data and the results of computer simulations we have shown that the fractal dimension of the particle clusters in ERF is one for 2-dimensional space and 5/4 for 3-dimensional space.
Keywords: 82.70.-y      83.50.Pk      47.53.+n     
Published: 01 August 1995
PACS:  82.70.-y (Disperse systems; complex fluids)  
  83.50.Pk  
  47.53.+n (Fractals in fluid dynamics)  
TRENDMD:   
URL:  
http://cpl.iphy.ac.cn/       OR      http://cpl.iphy.ac.cn/Y1995/V12/I8/0501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WU Feng
TANG Xinlu
YANG Yuegui
WANG Xiaohong
Related articles from Frontiers Journals
[1] KOU Jian-Long, LU Hang-Jun, WU Feng-Min, XU You-Sheng. Sprout Branching of Tumour Capillary Network Growth: Fractal Dimension and Multifractal Structure[J]. Chin. Phys. Lett., 2008, 25(5): 501-504
[2] YUN Mei-Juan, YU Bo-Ming, Xu Peng, CAI Jian-Chao. Fractal Analysis of Power-Law Fluid in a Single Capillary[J]. Chin. Phys. Lett., 2008, 25(2): 501-504
[3] WEI Jin-Jia, KAWAGUCHI Yasuo, YU Bo, LI Feng-Chen. Brownian Dynamics Simulation of Microstructures and Elongational Viscosities of Micellar Surfactant Solution[J]. Chin. Phys. Lett., 2008, 25(12): 501-504
[4] LI Hua-Bing, JIN Li, QIU Bing. Deformation of Two-Dimensional Nonuniform-Membrane Red Blood Cells Simulated by a Lattice[J]. Chin. Phys. Lett., 2008, 25(11): 501-504
[5] KANG Yan-Mei, JIANG Yao-Lin. Long-Time Dynamic Response and Stochastic Resonance of Subdiffusive Overdamped Bistable Fractional Fokker--Planck Systems[J]. Chin. Phys. Lett., 2008, 25(10): 501-504
[6] XU Sheng-Hua, SUN Zhi-Wei. Evaluation of Influence of Multiple Scattering Effect in Light-Scattering-Based Applications[J]. Chin. Phys. Lett., 2007, 24(6): 501-504
[7] LIAO Tian-He, GAO Qiong. Fractional Fourier Transform of Cantor Sets[J]. Chin. Phys. Lett., 2005, 22(9): 501-504
[8] CHEN Wen. Lévy Stable Distribution and [0,2] Power Law Dependence of Acoustic Absorption on Frequency in Various Lossy Media[J]. Chin. Phys. Lett., 2005, 22(10): 501-504
[9] CHEN Yong. Effect of Size Polydispersity on Melting of Charged Colloidal Systems[J]. Chin. Phys. Lett., 2003, 20(9): 501-504
[10] BA Xin-Wu, ZHANG Shu-Wen, WANG Hai-Jun, WANG Su-Juan, HAN Ying-Hui. Fractal Dimension of Randomly Branched Polymers in a Good Solvent[J]. Chin. Phys. Lett., 2002, 19(8): 501-504
[11] GUO Li-Xin, WU Zhen-Sen. Moment Method with Wavelet Expansions for Fractal Rough Surface Scattering[J]. Chin. Phys. Lett., 2002, 19(11): 501-504
[12] NI Fu-Sheng, GU Guo-Qing, CHEN Kang-Min. Low-Frequency Dielectric Dispersion of Highly Concentrated Spherical Particles in an Electrolyte Solution[J]. Chin. Phys. Lett., 2002, 19(10): 501-504
[13] LIU Wen-Xian, TENG Shu-Yun, ZHANG Ning-Yu, LIU De-Li, CHENG Chuan-Fu. Computational Generation and the Simulation of the Light Scattering of Self-Affine Fractal Random Surface[J]. Chin. Phys. Lett., 2001, 18(2): 501-504
Viewed
Full text


Abstract