30 Most Down Articles
Published in last 1 year | In last 2 years| In last 3 years| All| Most Downloaded in Recent Month | Most Downloaded in Recent Year|

In last 3 years
Please wait a minute...
For Selected: View Abstracts Toggle Thumbnails
Experimental Realization of an Intrinsic Magnetic Topological Insulator
Yan Gong, Jingwen Guo, Jiaheng Li, Kejing Zhu, Menghan Liao, Xiaozhi Liu, Qinghua Zhang, Lin Gu, Lin Tang, Xiao Feng, Ding Zhang, Wei Li, Canli Song, Lili Wang, Pu Yu, Xi Chen, Yayu Wang, Hong Yao, Wenhui Duan, Yong Xu, Shou-Cheng Zhang, Xucun Ma, Qi-Kun Xue, Ke He
Chin. Phys. Lett.    2019, 36 (7): 076801 .   DOI: 10.1088/0256-307X/36/7/076801
Abstract   HTML   PDF (7918KB)
An intrinsic magnetic topological insulator (TI) is a stoichiometric magnetic compound possessing both inherent magnetic order and topological electronic states. Such a material can provide a shortcut to various novel topological quantum effects but remained elusive experimentally for a long time. Here we report the experimental realization of thin films of an intrinsic magnetic TI, MnBi$_{2}$Te$_{4}$, by alternate growth of a Bi$_{2}$Te$_{3}$ quintuple layer and a MnTe bilayer with molecular beam epitaxy. The material shows the archetypical Dirac surface states in angle-resolved photoemission spectroscopy and is demonstrated to be an antiferromagnetic topological insulator with ferromagnetic surfaces by magnetic and transport measurements as well as first-principles calculations. The unique magnetic and topological electronic structures and their interplays enable the material to embody rich quantum phases such as quantum anomalous Hall insulators and axion insulators at higher temperature and in a well-controlled way.
Resonant Quantum Search with Monitor Qubits
Frank Wilczek, Hong-Ye Hu, Biao Wu
Chin. Phys. Lett.    2020, 37 (5): 050304 .   DOI: 10.1088/0256-307X/37/5/050304
Abstract   HTML   PDF (582KB)
We present an algorithm for the generalized search problem (searching $k$ marked items among $N$ items) based on a continuous Hamiltonian and exploiting resonance. This resonant algorithm has the same time complexity $O(\sqrt{N/k})$ as the Grover algorithm. A natural extension of the algorithm, incorporating auxiliary "monitor" qubits, can determine $k$ precisely, if it is unknown. The time complexity of our counting algorithm is $O(\sqrt{N})$, similar to the best quantum approximate counting algorithm, or better, given appropriate physical resources.
Pressure-Dependent Point-Contact Spectroscopy of Superconducting PbTaSe$_2$ Single Crystals
Hai Zi, Ling-Xiao Zhao, Xing-Yuan Hou, Lei Shan, Zhian Ren, Gen-Fu Chen, and Cong Ren
Chin. Phys. Lett.    2020, 37 (9): 097403 .   DOI: 10.1088/0256-307X/37/9/097403
Abstract   HTML   PDF (5795KB)
We develop an experimental tool to investigate the order parameter of superconductors by combining point-contact spectroscopy measurement with high-pressure technique. It is demonstrated for the first time that planar point-contact spectroscopy measurement on noncentrosymmetric superconducting PbTaSe$_2$ single crystals is systematically subjected to hydrostatic pressures up to 12.1 kbar. Under such a high pressure, the normal-state contact resistance is sensitive to the applied pressure, reflecting the underlying variation of contact transparency upon pressures. In a superconducting state, the pressure dependence of the energy gap $\varDelta_0$ and the critical temperature $T_{\rm c}$ for gap opening/closing are extracted based on a generalized Blond–Tinkham–Klapwijk model. The gap ratio $2\varDelta_0/k_{_{\rm B}}T_{\rm c}$ indicates a crossover from weak coupling to strong coupling in electron pairing strength upon pressure for PbTaSe$_2$. Our experimental results show the accessibility and validity of high-pressure point-contact spectroscopy, offering rich information about high-pressure superconductivity.
Electro-Optically Switchable Optical True Delay Lines of Meter-Scale Lengths Fabricated on Lithium Niobate on Insulator Using Photolithography Assisted Chemo-Mechanical Etching
Jun-xia Zhou, Ren-hong Gao, Jintian Lin, Min Wang, Wei Chu, Wen-bo Li, Di-feng Yin, Li Deng, Zhi-wei Fang, Jian-hao Zhang, Rong-bo Wuand Ya Cheng
Chin. Phys. Lett.    2020, 37 (8): 084201 .   DOI: 10.1088/0256-307X/37/8/084201
Abstract   HTML   PDF (1221KB)
Optical true delay lines (OTDLs) of low propagation losses, small footprints and high tuning speeds and efficiencies are of critical importance for various photonic applications. Here, we report fabrication of electro-optically switchable OTDLs on lithium niobate on insulator using photolithography assisted chemo-mechanical etching. Our device consists of several low-loss optical waveguides of different lengths which are consecutively connected by electro-optical switches to generate different amounts of time delay. The fabricated OTLDs show an ultra-low propagation loss of $\sim 0.03$ dB/cm for waveguide lengths well above 100 cm.
Pressure-Induced Topological and Structural Phase Transitions in an Antiferromagnetic Topological Insulator
Cuiying Pei, Yunyouyou Xia, Jiazhen Wu, Yi Zhao, Lingling Gao, Tianping Ying, Bo Gao, Nana Li, Wenge Yang, Dongzhou Zhang, Huiyang Gou, Yulin Chen, Hideo Hosono, Gang Li, Yanpeng Qi
Chin. Phys. Lett.    2020, 37 (6): 066401 .   DOI: 10.1088/0256-307X/37/6/066401
Abstract   HTML   PDF (5392KB)
Recently, natural van der Waals heterostructures of (MnBi$_{2}$Te$_{4}$)$_{m}$(Bi$_{2}$Te$_{3}$)$_{n}$ have been theoretically predicted and experimentally shown to host tunable magnetic properties and topologically nontrivial surface states. We systematically investigate both the structural and electronic responses of MnBi$_{2}$Te$_{4}$ and MnBi$_{4}$Te$_{7}$ to external pressure. In addition to the suppression of antiferromagnetic order, MnBi$_{2}$Te$_{4}$ is found to undergo a metal–semiconductor–metal transition upon compression. The resistivity of MnBi$_{4}$Te$_{7}$ changes dramatically under high pressure and a non-monotonic evolution of $\rho (T)$ is observed. The nontrivial topology is proved to persist before the structural phase transition observed in the high-pressure regime. We find that the bulk and surface states respond differently to pressure, which is consistent with the non-monotonic change of the resistivity. Interestingly, a pressure-induced amorphous state is observed in MnBi$_{2}$Te$_{4}$, while two high-pressure phase transitions are revealed in MnBi$_{4}$Te$_{7}$. Our combined theoretical and experimental research establishes MnBi$_{2}$Te$_{4}$ and MnBi$_{4}$Te$_{7}$ as highly tunable magnetic topological insulators, in which phase transitions and new ground states emerge upon compression.
Large Dynamical Axion Field in Topological Antiferromagnetic Insulator Mn$_2$Bi$_2$Te$_5$
Jinlong Zhang, Dinghui Wang, Minji Shi, Tongshuai Zhu, Haijun Zhang, Jing Wang
Chin. Phys. Lett.    2020, 37 (7): 077304 .   DOI: 10.1088/0256-307X/37/7/077304
Abstract   HTML   PDF (2348KB)
The dynamical axion field is a new state of quantum matter where the magnetoelectric response couples strongly to its low-energy magnetic fluctuations. It is fundamentally different from an axion insulator with a static quantized magnetoelectric response. The dynamical axion field exhibits many exotic phenomena such as axionic polariton and axion instability. However, these effects have not been experimentally confirmed due to the lack of proper topological magnetic materials. Combining analytic models and first-principles calculations, here we predict a series of van der Waals layered Mn$_2$Bi$_2$Te$_5$-related topological antiferromagnetic materials that could host the long-sought dynamical axion field with a topological origin. We also show that a large dynamical axion field can be achieved in antiferromagnetic insulating states close to the topological phase transition. We further propose the optical and transport experiments to detect such a dynamical axion field. Our results could directly aid and facilitate the search for topological-origin large dynamical axion field in realistic materials.
Resistivity and Radio-Frequency Properties of Two-Generation Trap-Rich Silicon-on-Insulator Substrates
Lei Zhu, Yong-Wei Chang, Nan Gao, Xin Su, YeMin Dong, Lu Fei, Xing Wei, Xi Wang
Chin. Phys. Lett.    2018, 35 (4): 047302 .   DOI: 10.1088/0256-307X/35/4/047302
Abstract   HTML   PDF (1369KB)
Crystal morphologies and resistivity of polysilicon trap-rich layers of two-generation trap-rich silicon-on-insulator (TR-SOI) substrates are studied. It is found that the resistivity of the trap-rich layer of generation 2 (TR-G2) is higher than that of generation 1 (TR-G1), although the crystal morphologies of the trap rich layers are the same. In addition, the rf performance of two-generation TR-SOI substrates is investigated by coplanar waveguide lines and inductors. The results show that both the rf loss and the second harmonic distortion of TR-G2 are smaller than those of TR-G1. These results can be attributed to the higher resistivity values of both the trap-rich layer and the high-resistivity silicon (HR-Si) substrate of TR-G2. Moreover, the rf performance of the TR-SOI substrate with thicker buried oxide is slightly better. The second harmonics of various TR-SOI substrates are simulated and evaluated with the harmonic quality factor model as well. It can be predicted that the TR-SOI substrate will see further improvement in rf performance if the resistivities of both the trap-rich layer and HR-Si substrate increase.
Magnetic Sensing inside a Diamond Anvil Cell via Nitrogen-Vacancy Center Spins
Yan-Xing Shang, Fang Hong, Jian-Hong Dai, Hui-Yu, Ya-Nan Lu, En-Ke Liu, Xiao-Hui Yu, Gang-Qin Liu, Xin-Yu Pan
Chin. Phys. Lett.    2019, 36 (8): 086201 .   DOI: 10.1088/0256-307X/36/8/086201
Abstract   HTML   PDF (1001KB)
The diamond anvil cell-based high-pressure technique is a unique tool for creating new states of matter and for understanding the physics underlying some exotic phenomena. In situ sensing of spin and charge properties under high pressure is crucially important but remains technically challenging. While the nitrogen-vacancy (NV) center in diamond is a promising quantum sensor under extreme conditions, its spin dynamics and the quantum control of its spin states under high pressure remain elusive. In this study, we demonstrate coherent control, spin relaxation, and spin dephasing measurements for ensemble NV centers up to 32.8 GPa. With this in situ quantum sensor, we investigate the pressure-induced magnetic phase transition of a micron-size permanent magnet Nd$_{2}$Fe$_{14}$B sample in a diamond anvil cell, with a spatial resolution of $\sim$2 μm, and sensitivity of $\sim$20 $\mu$T/Hz$^{1/2}$. This scheme could be generalized to measure other parameters such as temperature, pressure and their gradients under extreme conditions. This will be beneficial for frontier research of condensed matter physics and geophysics.
Superconducting Single-Layer T-Graphene and Novel Synthesis Routes
Qinyan Gu, Dingyu Xing, Jian Sun
Chin. Phys. Lett.    2019, 36 (9): 097401 .   DOI: 10.1088/0256-307X/36/9/097401
Abstract   HTML   PDF (15832KB)
Single-layer superconductors are ideal materials for fabricating superconducting nano devices. However, up to date, very few single-layer elemental superconductors have been predicted and especially no one has been successfully synthesized yet. Here, using crystal structure search techniques and ab initio calculations, we predict that a single-layer planar carbon sheet with 4- and 8-membered rings called T-graphene is a new intrinsic elemental superconductor with superconducting critical temperature ($T_{\rm c}$) up to around 20.8 K. More importantly, we propose a synthesis route to obtain such a single-layer T-graphene, that is, a T-graphene potassium intercalation compound (C$_4$K with $P4/mmm$ symmetry) is firstly synthesized at high pressure ($>$11.5 GPa) and then quenched to ambient condition; and finally, the single-layer T-graphene can be either exfoliated using the electrochemical method from the bulk C$_4$K, or peeled off from bulk T-graphite C$_4$, where C$_4$ can be obtained from C$_4$K by evaporating the K atoms. Interestingly, we find that the calculated $T_{\rm c}$ of C$_4$K is about 30.4 K at 0 GPa, which sets a new record for layered carbon-based superconductors. The present findings add a new class of carbon-based superconductors. In particular, once the single-layer T-graphene is synthesized, it can pave the way for fabricating superconducting devices together with other 2D materials using the layer-by-layer growth techniques.
Growth of $\beta$-Ga$_{2}$O$_{3}$ Films on Sapphire by Hydride Vapor Phase Epitaxy
Ze-Ning XIONG, Xiang-Qian XIU, Yue-Wen LI, Xue-Mei HUA, Zi-Li XIE, Peng CHEN, Bin LIU, Ping HAN, Rong ZHANG, You-Dou ZHENG
Chin. Phys. Lett.    2018, 35 (5): 058101 .   DOI: 10.1088/0256-307X/35/5/058101
Abstract   HTML   PDF (1621KB)
Two-inch Ga$_{2}$O$_{3}$ films with ($\bar{2}$01)-orientation are grown on $c$-sapphire at 850–1050$^{\circ}\!$C by hydride vapor phase epitaxy. High-resolution x-ray diffraction shows that pure $\beta$-Ga$_{2}$O$_{3}$ with a smooth surface has a higher crystal quality, and the Raman spectra reveal a very small residual strain in $\beta$-Ga$_{2}$O$_{3}$ grown by hydride vapor phase epitaxy compared with bulk single crystal. The optical transmittance is higher than 80% in the visible and near-UV regions, and the optical bandgap energy is calculated to be 4.9 eV.
Distinct Superconducting Gap on Two Bilayer-Split Fermi Surface Sheets in Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ Superconductor
Ping Ai, Qiang Gao, Jing Liu, Yuxiao Zhang, Cong Li, Jianwei Huang, Chunyao Song, Hongtao Yan, Lin Zhao, Guo-Dong Liu, Gen-Da Gu, Feng-Feng Zhang, Feng Yang, Qin-Jun Peng, Zu-Yan Xu, Xing-Jiang Zhou
Chin. Phys. Lett.    2019, 36 (6): 067402 .   DOI: 10.1088/0256-307X/36/6/067402
Abstract   HTML   PDF (2816KB)
High resolution laser-based angle-resolved photoemission measurements are carried out on an overdoped superconductor Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ with a $T_{\rm c}$ of 75 K. Two Fermi surface sheets caused by bilayer splitting are clearly identified with rather different doping levels: the bonding sheet corresponds to a doping level of 0.14, which is slightly underdoped while the antibonding sheet has a doping of 0.27 that is heavily overdoped, giving an overall doping level of 0.20 for the sample. Different superconducting gap sizes on the two Fermi surface sheets are revealed. The superconducting gap on the antibonding Fermi surface sheet follows a standard d-wave form while it deviates from the standard d-wave form for the bonding Fermi surface sheet. The maximum gap difference between the two Fermi surface sheets near the antinodal region is $\sim$2 meV. These observations provide important information for studying the relationship between the Fermi surface topology and superconductivity, and the layer-dependent superconductivity in high temperature cuprate superconductors.
Superconductivity and Fermi Surface Anisotropy in Transition Metal Dichalcogenide NbTe$_{2}$
Xi Zhang, Tianchuang Luo, Xiyao Hu, Jing Guo, Gongchang Lin, Yuehui Li, Yanzhao Liu, Xiaokang Li, Jun Ge, Ying Xing, Zengwei Zhu, Peng Gao, Liling Sun, Jian Wang
Chin. Phys. Lett.    DOI: 10.1088/0256-307X/36/5/057402
Abstract   HTML   PDF (1541KB)
Transition metal dichalcogenides, featuring layered structures, have aroused enormous interest as a platform for novel physical phenomena and a wide range of potential applications. Among them, special interest has been placed upon WTe$_{2}$ and MoTe$_{2}$, which exhibit non-trivial topology both in single layer and bulk as well as pressure induced or enhanced superconductivity. We study another distorted 1T material NbTe$_{2}$ through systematic electrical transport measurements. Intrinsic superconductivity with onset transition temperature ($T_{\rm c}^{\rm onset}$) up to 0.72 K is detected where the upper critical field ($H_{\rm c}$) shows unconventional quasi-linear behavior, indicating spin-orbit coupling induced p-wave paring. Furthermore, a general model is proposed to fit the angle-dependent magnetoresistance, which reveals the Fermi surface anisotropy of NbTe$_{2}$. Finally, non-saturating linear magnetoresistance up to 50 T is observed and attributed to the quantum limit transport.
Pressure-Induced Metallization Accompanied by Elongated S–S Dimer in Charge Transfer Insulator NiS$_{2}$
Hao Wu, Yong-Hui Zhou, Yi-Fang Yuan, Chun-Hua Chen, Ying Zhou, Bo-Wen Zhang, Xu-Liang Chen, Chuan-Chuan Gu, Chao An, Shu-Yang Wang, Meng-Yao Qi, Ran-Ran Zhang, Li-Li Zhang, Xin-Jian Li, Zhao-Rong Yang
Chin. Phys. Lett.    2019, 36 (10): 107101 .   DOI: 10.1088/0256-307X/36/10/107101
Abstract   HTML   PDF (1071KB)
The insulator-metal transition triggered by pressure in charge transfer insulator NiS$_{2}$ is investigated by combining high-pressure electrical transport, synchrotron x-ray diffraction and Raman spectroscopy measurements up to 40–50 GPa. Upon compression, we show that the metallization firstly appears in the low temperature region at $\sim$3.2 GPa and then extends to room temperature at $\sim $8.0 GPa. During the insulator-metal transition, the bond length of S–S dimer extracted from the synchrotron x-ray diffraction increases with pressure, which is supported by the observation of abnormal red-shift of the Raman modes between 3.2 and 7.1 GPa. Considering the decreasing bonding-antibonding splitting due to the expansion of S–S dimer, the charge gap between the S-$pp\pi^*$ band and the upper Hubbard band of Ni-3$d$ $e_{\rm g}$ state is remarkably decreased. These results consistently indicate that the elongated S–S dimer plays a predominant role in the insulator-metal transition under high pressure, even though the $p$-$d$ hybridization is enhanced simultaneously, in accordance with a scenario of charge-gap-controlled type.
Imaginary Time Crystal of Thermal Quantum Matter
Zi Cai, Yizhen Huang, W. Vincent Liu
Chin. Phys. Lett.    2020, 37 (5): 050503 .   DOI: 10.1088/0256-307X/37/5/050503
Abstract   HTML   PDF (2767KB)
Temperature is a fundamental thermodynamic variable for matter. Physical observables are often found to either increase or decrease with it, or show a non-monotonic dependence with peaks signaling underlying phase transitions or anomalies. Statistical field theory has established connection between temperature and time: a quantum ensemble with inverse temperature $\beta$ is formally equivalent to a dynamic system evolving along an imaginary time from 0 to $i\beta$ in the space one dimension higher. Here we report that a gas of hard-core bosons interacting with a thermal bath manifests an unexpected temperature-periodic oscillation of its macroscopic observables, arising from the microscopic origin of space-time locked translational symmetry breaking and crystalline ordering. Such a temperature crystal, supported by quantum Monte Carlo simulation, generalizes the concept of purely spatial density-wave order to the imaginary time axis for Euclidean action.
Machine Learning to Instruct Single Crystal Growth by Flux Method
Tang-Shi Yao, Cen-Yao Tang, Meng Yang, Ke-Jia Zhu, Da-Yu Yan, Chang-Jiang Yi, Zi-Li Feng, He-Chang Lei, Cheng-He Li, Le Wang, Lei Wang, You-Guo Shi, Yu-Jie Sun, Hong Ding
Chin. Phys. Lett.    2019, 36 (6): 068101 .   DOI: 10.1088/0256-307X/36/6/068101
Abstract   HTML   PDF (691KB)
Growth of high-quality single crystals is of great significance for research of condensed matter physics. The exploration of suitable growing conditions for single crystals is expensive and time-consuming, especially for ternary compounds because of the lack of ternary phase diagram. Here we use machine learning (ML) trained on our experimental data to predict and instruct the growth. Four kinds of ML methods, including support vector machine (SVM), decision tree, random forest and gradient boosting decision tree, are adopted. The SVM method is relatively stable and works well, with an accuracy of 81% in predicting experimental results. By comparison, the accuracy of laboratory reaches 36%. The decision tree model is also used to reveal which features will take critical roles in growing processes.
Theoretical Prediction of Diamond Betavoltaic Batteries Performance Using $^{63}$Ni
Yu-Min Liu, Jing-Bin Lu, Xiao-Yi Li, Xu Xu, Rui He, Ren-Zhou Zheng, Guo-Dong Wei
Chin. Phys. Lett.    2018, 35 (7): 072301 .   DOI: 10.1088/0256-307X/35/7/072301
Abstract   HTML   PDF (877KB)
A diamond p-n junction is used to convert the decay energy of $^{63}$Ni source into electrical energy. The self-absorption effect of the $^{63}$Ni source, the backscatter process and the transport process of beta particles in diamond materials are studied. Then the theoretical maximum of electrical properties and the energy conversion efficiencies of diamond-$^{63}$Ni p-n junction batteries are achieved. Finally, a feasible design of $p^{+}p^{-}n^{+}$ junction battery, which has the maximum output power density of 0.42 $\mu$W/cm$^{2}$ and the optimal device conversion efficiency of 26.8%, is proposed.
Classical-Noise-Free Sensing Based on Quantum Correlation Measurement
Ping Wang , Chong Chen , and Ren-Bao Liu
Chin. Phys. Lett.    2021, 38 (1): 010301 .   DOI: 10.1088/0256-307X/38/1/010301
Abstract   HTML   PDF (791KB)
Quantum sensing, using quantum properties of sensors, can enhance resolution, precision, and sensitivity of imaging, spectroscopy, and detection. An intriguing question is: Can the quantum nature (quantumness) of sensors and targets be exploited to enable schemes that are not possible for classical probes or classical targets? Here we show that measurement of the quantum correlations of a quantum target indeed allows for sensing schemes that have no classical counterparts. As a concrete example, in the case that the second-order classical correlation of a quantum target could be totally concealed by non-stationary classical noise, the higher-order quantum correlations can single out a quantum target from the classical noise background, regardless of the spectrum, statistics, or intensity of the noise. Hence a classical-noise-free sensing scheme is proposed. This finding suggests that the quantumness of sensors and targets is still to be explored to realize the full potential of quantum sensing. New opportunities include sensitivity beyond classical approaches, non-classical correlations as a new approach to quantum many-body physics, loophole-free tests of the quantum foundation, et cetera.
Giant Spin Transfer Torque in Atomically Thin Magnetic Bilayers
Weihao Cao, Matisse Wei-Yuan Tu, Jiang Xiao, and Wang Yao
Chin. Phys. Lett.    2020, 37 (10): 107201 .   DOI: 10.1088/0256-307X/37/10/107201
Abstract   HTML   PDF (1297KB)
In cavity quantum electrodynamics, the multiple reflections of a photon between two mirrors defining a cavity is exploited to enhance the light-coupling of an intra-cavity atom. We show that this paradigm for enhancing the interaction of a flying particle with a localized object can be generalized to spintronics based on van der Waals 2D magnets. Upon tunneling through a magnetic bilayer, we find that the spin transfer torques per electron incidence can become orders of magnitude larger than $\hbar /2$, made possible by electron's multi-reflection path through the ferromagnetic monolayers as an intermediate of their angular momentum transfer. Over a broad energy range around the tunneling resonances, the damping-like spin transfer torque per electron tunneling features a universal value of $(\hbar/2)\tan (\theta /2)$, depending only on the angle $\theta$ between the magnetizations. These findings expand the scope of magnetization manipulations for high-performance and high-density storage based on van der Waals magnets.
A New Path to Improve High $\beta_{\rm p}$ Plasma Performance on EAST for Steady-State Tokamak Fusion Reactor
Baonian Wan and the EAST team
Chin. Phys. Lett.    2020, 37 (4): 045202 .   DOI: 10.1088/0256-307X/37/4/045202
Abstract   HTML   PDF (573KB)
High $\beta_{\rm p}$ scenario is foreseen to be a promising candidate operational mode for steady-state tokamak fusion reactors. Dedicated experiments on EAST and data analysis find that density gradient $\nabla n$ is a control knob to improve energy confinement in high $\beta_{\rm p}$ plasmas at low toroidal rotation as projected for a fusion reactor. Different from previously known turbulent stabilization mechanisms such as ${\boldsymbol E} \times {\boldsymbol B}$ shear and Shafranov shift, high density gradient can enhance the Shafranov shift stabilizing effect significantly in high $\beta_{\rm p}$ regime, giving that a higher density gradient is readily accessible in future fusion reactors with lower collisionality. This new finding is of great importance for the next-step fusion development because it may open a new path towards even higher energy confinement in the high $\beta_{\rm p}$ scenario. It has been demonstrated in the recent EAST experiments, i.e., a fully non-inductive high $\beta_{\rm p}$ ($\sim $2) H-mode plasma ($H_{98y2}\ge 1.3$) has been obtained for a duration over 100 current diffusion times, which sets another new world record of long-pulse high-performance tokamak plasma operation with the normalized performance approaching the ITER and CFETR regimes.
A Ubiquitous Thermal Conductivity Formula for Liquids, Polymer Glass, and Amorphous Solids
Qing Xi, Jinxin Zhong, Jixiong He, Xiangfan Xu, Tsuneyoshi Nakayama, Yuanyuan Wang, Jun Liu, Jun Zhou, and Baowen Li
Chin. Phys. Lett.    2020, 37 (10): 104401 .   DOI: 10.1088/0256-307X/37/10/104401
Abstract   HTML   PDF (1069KB)
The microscopic mechanism of thermal transport in liquids and amorphous solids has been an outstanding problem for a long time. There have been several approaches to explain the thermal conductivities in these systems, for example, Bridgman's formula for simple liquids, the concept of the minimum thermal conductivity for amorphous solids, and the thermal resistance network model for amorphous polymers. Here, we present a ubiquitous formula to calculate the thermal conductivities of liquids and amorphous solids in a unified way, and compare it with previous ones. The calculated thermal conductivities using this formula without fitting parameters are in excellent agreement with the experimental data. Our formula not only provides a detailed microscopic mechanism of heat transfer in these systems, but also resolves the discrepancies between existing formulae and experimental data.
Intrinsic Instability of the Hybrid Halide Perovskite Semiconductor CH$_{3}$NH$_{3}$PbI$_{3}$$^*$
Yue-Yu Zhang, Shiyou Chen, Peng Xu, Hongjun Xiang, Xin-Gao Gong, Aron Walsh, Su-Huai Wei
Chin. Phys. Lett.    2018, 35 (3): 036104 .   DOI: 10.1088/0256-307X/35/3/036104
Abstract   HTML   PDF (766KB)
The organic-inorganic hybrid perovskite CH$_{3}$NH$_{3}$PbI$_{3}$ has attracted significant interest for its high performance in converting solar light into electrical power with an efficiency exceeding 20%. Unfortunately, chemical stability is one major challenge in the development of CH$_{3}$NH$_{3}$PbI$_{3}$ solar cells. It was commonly assumed that moisture or oxygen in the environment causes the poor stability of hybrid halide perovskites, however, here we show from the first-principles calculations that the room-temperature tetragonal phase of CH$_{3}$NH$_{3}$PbI$_{3}$ is thermodynamically unstable with respect to the phase separation into CH$_{3}$NH$_{3}$I + PbI$_{2}$, i.e., the disproportionation is exothermic, independent of the humidity or oxygen in the atmosphere. When the structure is distorted to the low-temperature orthorhombic phase, the energetic cost of separation increases, but remains small. Contributions from vibrational and configurational entropy at room temperature have been considered, but the instability of CH$_{3}$NH$_{3}$PbI$_{3}$ is unchanged. When I is replaced by Br or Cl, Pb by Sn, or the organic cation CH$_{3}$NH$_{3}$ by inorganic Cs, the perovskites become more stable and do not phase-separate spontaneously. Our study highlights that the poor chemical stability is intrinsic to CH$_{3}$NH$_{3}$PbI$_{3}$ and suggests that element-substitution may solve the chemical stability problem in hybrid halide perovskite solar cells.
Enhanced Ferromagnetism of CrI$_{3}$ Bilayer by Self-Intercalation
Yu Guo , Nanshu Liu , Yanyan Zhao , Xue Jiang , Si Zhou, and Jijun Zhao 
Chin. Phys. Lett.    2020, 37 (10): 107506 .   DOI: 10.1088/0256-307X/37/10/107506
Abstract   HTML   PDF (2562KB)
Two-dimensional (2D) ferromagnets with high Curie temperature have long been the pursuit for electronic and spintronic applications. CrI$_{3}$ is a rising star of intrinsic 2D ferromagnets, however, it suffers from weak exchange coupling. Here we propose a general strategy of self-intercalation to achieve enhanced ferromagnetism in bilayer CrI$_{3}$. We show that filling either Cr or I atoms into the van der Waals gap of stacked and twisted CrI$_{3}$ bilayers can induce the double exchange effect and significantly strengthen the interlayer ferromagnetic coupling. According to our first-principles calculations, the intercalated native atoms act as covalent bridge between two CrI$_{3}$ layers and lead to discrepant oxidation states for the Cr atoms. These theoretical results offer a facile route to achieve high-Curie-temperature 2D magnets for device implementation.
Mott Transition and Superconductivity in Quantum Spin Liquid Candidate NaYbSe$_{2}$
Ya-Ting Jia, Chun-Sheng Gong, Yi-Xuan Liu, Jian-Fa Zhao, Cheng Dong, Guang-Yang Dai, Xiao-Dong Li, He-Chang Lei, Run-Ze Yu, Guang-Ming Zhang, and Chang-Qing Jin
Chin. Phys. Lett.    2020, 37 (9): 097404 .   DOI: 10.1088/0256-307X/37/9/097404
Abstract   HTML   PDF (1103KB)
The Mott transition is one of the fundamental issues in condensed matter physics, especially in the system with antiferromagnetic long-range order. However, such a transition is rare in quantum spin liquid (QSL) systems without long-range order. Here we report the experimental pressure-induced insulator to metal transition followed by the emergence of superconductivity in the QSL candidate NaYbSe$_{2}$ with a triangular lattice of 4$f$ Yb$^{3+}$ ions. Detail analysis of transport properties in metallic state shows an evolution from non-Fermi liquid to Fermi liquid behavior when approaching the vicinity of superconductivity. An irreversible structure phase transition occurs around 11 GPa, which is revealed by the x-ray diffraction. These results shed light on the Mott transition in the QSL systems.
Low-Frequency Noise in Amorphous Indium Zinc Oxide Thin Film Transistors with Aluminum Oxide Gate Insulator
Ya-Yi Chen, Yuan Liu, Zhao-Hui Wu, Li Wang, Bin Li, Yun-Fei En, Yi-Qiang Chen
Chin. Phys. Lett.    2018, 35 (4): 048502 .   DOI: 10.1088/0256-307X/35/4/048502
Abstract   HTML   PDF (781KB)
Low-frequency noise (LFN) in all operation regions of amorphous indium zinc oxide (a-IZO) thin film transistors (TFTs) with an aluminum oxide gate insulator is investigated. Based on the LFN measured results, we extract the distribution of localized states in the band gap and the spatial distribution of border traps in the gate dielectric, and study the dependence of measured noise on the characteristic temperature of localized states for a-IZO TFTs with Al$_2$O$_3$ gate dielectric. Further study on the LFN measured results shows that the gate voltage dependent noise data closely obey the mobility fluctuation model, and the average Hooge's parameter is about $1.18\times10^{-3}$. Considering the relationship between the free carrier number and the field effect mobility, we simulate the LFN using the $\Delta N$–$\Delta\mu$ model, and the total trap density near the IZO/oxide interface is about $1.23\times 10^{18}$ cm$^{-3}$eV$^{-1}$.
Charge Density Wave States in 2H-MoTe$_{2}$ Revealed by Scanning Tunneling Microscopy
Lu Dong, Guan-Yong Wang, Zhen Zhu, Chen-Xiao Zhao, Xin-Yi Yang, Ai-Min Li, Jing-Lei Chen, Dan-Dan Guan, Yao-Yi Li, Hao Zheng, Mao-Hai Xie, Jin-Feng Jia
Chin. Phys. Lett.    2018, 35 (6): 066801 .   DOI: 10.1088/0256-307X/35/6/066801
Abstract   HTML   PDF (1132KB)
2H- and 1T$'$-phase monolayer MoTe$_{2}$ films on highly oriented pyrolytic graphite are studied using scanning tunneling microscopy and spectroscopy (STM/STS). The phase transition of MoTe$_{2}$ can be controlled by a post-growth annealing process, and the intermediate state during the phase transition is directly observed by STM. For 2H-MoTe$_{2}$, inversion domain boundaries are presented as bright lines at high sample bias, but as dark lines at lower sample bias. The $dI/dV$ mappings reveal the distinct distributions of electronic states between domain boundaries and interiors of domains. It should be noted that a $2\times2$ periodic structure is clearly discernable inside the domains, where the STS measurement shows a small dip of size $\sim$150 meV at the vicinity of the Fermi level, indicating that the $2\times2$ periodic structure may be an incommensurate charge density wave. Moreover, a $4\times4$ periodic structure appears in 2H-MoTe$_{2}$ grown at a higher substrate temperature.
Superconductivity of Lanthanum Superhydride Investigated Using the Standard Four-Probe Configuration under High Pressures
Fang Hong, Liuxiang Yang, Pengfei Shan, Pengtao Yang, Ziyi Liu, Jianping Sun, Yunyu Yin, Xiaohui Yu, Jinguang Cheng, and Zhongxian Zhao
Chin. Phys. Lett.    2020, 37 (10): 107401 .   DOI: 10.1088/0256-307X/37/10/107401
Abstract   HTML   PDF (688KB)
Recently, the theoretically predicted lanthanum superhydride, LaH$_{10 \pm \delta}$, with a clathrate-like structure was successfully synthesized and found to exhibit a record high superconducting transition temperature $T_{\rm c} \approx 250$ K at $\sim $170 GPa, opening a new route for room-temperature superconductivity. However, since in situ experiments at megabar pressures are very challenging, few groups have reported the $\sim $250 K superconducting transition in LaH$_{10 \pm \delta}$. Here, we establish a simpler sample-loading procedure that allows a relatively large sample size for synthesis and a standard four-probe configuration for resistance measurements. Following this procedure, we successfully synthesized LaH$_{10 \pm \delta}$ with dimensions up to $10 \times 20$ μm$^{2}$ by laser heating a thin La flake and ammonia borane at $\sim $1700 K in a symmetric diamond anvil cell under the pressure of 165 GPa. The superconducting transition at $T_{\rm c} \approx 250$ K was confirmed through resistance measurements under various magnetic fields. Our method will facilitate explorations of near-room-temperature superconductors among metal superhydrides.
Two-Dimensional Borane with 'Banana' Bonds and Dirac-Like Ring
Hong Wu, Yun-Hui Wang, Zhi-Hong Yang, Feng Li
Chin. Phys. Lett.    2018, 35 (3): 037101 .   DOI: 10.1088/0256-307X/35/3/037101
Abstract   HTML   PDF (1334KB)
Designing new two-dimensional (2D) semiconductors with novel topological characters is highly desirable for further material innovation. We propose a theoretical design of a stable 2D inorganic material, namely, borane, which is jointly stabilized by traditional B–B localized and unique B–H–B delocalized chemical bonds. In borane, the bonding natures along different directions are distinguishing, which lead to huge differences in mechanical strengths of 142.73 and 97.47 N/m for $a$ and $b$ directions, respectively. In a unit cell, each hydrogen atom binds to two boron atoms forming a three-center-two-electron (3c-2e) bridge bond B–H–B. This can be considered as an extension of diborane molecules from 0D to 2D. The collaboration of localized and delocalized chemical bonds endows borane with high structural stability, as indicated by its favorable cohesive energy, high mechanical strength, absence of imaginary modes in the phonon spectrum, and moderate melting point. Remarkably, borane has a fascinating electronic property featured with a Dirac-like ring in the electronic band structure. The unique bonding nature and electronic property in borane would attract intensive interests in both theory and experiment.
The Search for the Quantum Spin Liquid in Kagome Antiferromagnets
J.-J. Wen, Y. S. Lee
Chin. Phys. Lett.    2019, 36 (5): 050101 .   DOI: 10.1088/0256-307X/36/5/050101
Abstract   HTML   PDF (307KB)
Quantized Conductance of Majorana Zero Mode in the Vortex of the Topological Superconductor (Li$_{0.84}$Fe$_{0.16}$)OHFeSe
C. Chen, Q. Liu, T. Z. Zhang, D. Li, P. P. Shen, X. L. Dong, Z.-X. Zhao, T. Zhang, D. L. Feng
Chin. Phys. Lett.    DOI: 10.1088/0256-307X/36/5/057403
Abstract   HTML   PDF (1786KB)
The Majorana zero mode (MZM), which manifests as an exotic neutral excitation in superconductors, is the building block of topological quantum computing. It has recently been found in the vortices of several iron-based superconductors as a zero-bias conductance peak in tunneling spectroscopy. In particular, a clean and robust MZM has been observed in the cores of free vortices in (Li$_{0.84}$Fe$_{0.16}$)OHFeSe. Here using scanning tunneling spectroscopy, we demonstrate that Majorana-induced resonant Andreev reflection occurs between the STM tip and this zero-bias bound state, and consequently, the conductance at zero bias is quantized as $2e^{2}/h$. Our results present a hallmark signature of the MZM in the vortex of an intrinsic topological superconductor, together with its intriguing behavior.
Combining Cubic Spline Interpolation and Fast Fourier Transform to Extend Measuring Range of Reflectometry
Ju Cheng, Jian Lu, Hong-Chao Zhang, Feng Lei, Maryam Sardar, Xin-Tian Bian, Fen Zuo, Zhong-Hua Shen, Xiao-Wu Ni, Jin Shi
Chin. Phys. Lett.    2018, 35 (5): 050701 .   DOI: 10.1088/0256-307X/35/5/050701
Abstract   HTML   PDF (652KB)
The reflectometry is a common method used to measure the thickness of thin films. Using a conventional method, its measurable range is limited due to the low resolution of the current spectrometer embedded in the reflectometer. We present a simple method, using cubic spline interpolation to resample the spectrum with a high resolution, to extend the measurable transparent film thickness. A large measuring range up to 385 μm in optical thickness is achieved with the commonly used system. The numerical calculation and experimental results demonstrate that using the FFT method combined with cubic spline interpolation resampling in reflectrometry, a simple, easy-to-operate, economic measuring system can be achieved with high measuring accuracy and replicability.